
D2.1
Operational Landscape,

Requirements and Reference Architecture -
Initial version

Project number: 101167904
Project acronym: CASTOR

Project title:
Continuum of Trust: Increased Path Agility and Trustworthy
Device and Service Provisioning

Project Start Date: 1st October, 2024
Duration: 36 months

Programme: HORIZON-CL3-2023-CS-01

Deliverable Type: Report
Reference Number: HORIZON-CL3-2021-CS-01-101167904/ D2.1 / v1.0

Workpackage: WP2
Due Date: 30th September, 2025

Actual Submission Date: 1st December, 2025

Responsible Organisation: UBITECH
Editor: Nikos Fotos, Thanassis Giannetsos

Dissemination Level: Public
Revision: 1.0

Abstract:

This deliverable defines the CASTOR technical requirements,
alongside the specification of the conceptual reference archi-
tecture, the functional components, and interfaces between
them. It also provides an analysis and point of reference for
CASTOR in relation to the use cases and reference scenar-
ios including an analysis on the interfacing between the use
case application software stack and the CASTOR framework
as well as preliminary Key Performance Indicators that need
to be considered for engraining trust-enabled routing policies,
while also respecting the operational profile of the envisioned
use case scenarios. The purpose of this document is to de-
fine the parameters for the rest of the project and provide the
necessary input for the design and implementation of all secu-
rity enablers and models towards trust-aware, dynamic traffic
engineering provisioning.

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Funded by EU’s Horizon Europe programme under Grant Agreement number 101167904 (CASTOR). Views and opinions
expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union. Neither the
European Union nor the granting authority can be held responsible for them.

This work has received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI).

Funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee.

CASTOR D2.1 Public Page II

https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://cordis.europa.eu/project/id/101167904
https://www.sbfi.admin.ch/sbfi/en/home.html
https://www.ukri.org/

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Copyright Notice

© 2024 - 2027 CASTOR

Project Funded by the European Commission in the Horizon Europe Programme
Nature of the deliverable R*

Dissemination Level
PU Public, fully open, e.g. web (Deliverables flagged as public will be automatically

published in CORDIS project’s page)
X

SEN Sensitive, limited under the conditions of the Grant Agreement
Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444.
Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444
Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
DATA: Data sets, microdata, etc.
DMP: Data management plan
ETHICS: Deliverables related to ethics issues
SECURITY: Deliverables related to security issues
OTHER: Software, technical diagram, algorithms, models, etc.

CASTOR D2.1 Public Page I

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Editor

Nikos Fotos, Thanassis Giannetsos (UBITECH)

Contributors (ordered according to beneficiary numbers)

Nikos Fotos, Sofianna Menesidou, Panagiotis Banavos, Thanassis Giannetsos (UBITECH)
Iasonas Sakellariou, Stelios Kazazis, Symeon Tsintzos (QUBITECH)
Fabian Schwarz, Meni Orenbach (NVIDIA)
Yalan Wang, Liqun Chen (SURREY)
Alexandru Coles, , Ioan Constantin (ORO)
Vlad Chiriac, Ciprian-Romeo Comsa (TUIASI)
Riccardo Orizio, Michael McElligott, Stelios Basayiannis (COLLINS)
Vangelis Kosmatos, Panagiotis Pantazopoulos (ICCS)
Kostas Latanis (SUITE5)
Christos Dalamagkas, Ioannis Boukas, Evangelos Syrmos (K3Y)
Vasiliki Lamprousi, Aristi Galani, Sokratis Barmpounakis (WINGS)
Pablo Martinez, Antonio Skarmeta (UMU)
Alexandros Fakis, Kostas Maliatsos (FERON)
Gergely Kovacs, Andras Edelmayer (COMMSIGNIA)
Anuj Pathania, Andy Pimentel (UvA)
Jamie Pont, Budi Arief, Theo Dimitrakos (UKENT)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit
for any particular purpose. The content of this document reflects only the author‘s view – the European Commission
is not responsible for any use that may be made of the information it contains. The users use the information at
their sole risk and liability. This document has gone through the consortium’s internal review process and is still
subject to the review of the European Commission. Updates to the content may be made at a later stage.

CASTOR D2.1 Public Page II

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Executive Summary

CASTOR extends the state of the art in the secure data transmission by engraining trust metrics as
part of the Traffic Engineering (TE) process, which is the project’s central vision towards establishing
“trustful service-graph-chains”. Routing decisions determine how information flows across the Internet
and shape the performance and quality of globally-deployed services. In traditional networking, routing
affects how data packets travel from their source to their destination across topologies composed of inter-
connected network elements (i.e., routers). In IP networks, data is segmented into packets labelled with
headers that include the destination IP address. Routers inspect each packet’s address and select the
next hop using continuously updated routing tables. This process scales to thousands or even millions of
devices, ultimately enabling the global-scale delivery of Internet data flow.

Each selected path can be shaped by diverse criteria (such as hop count, bandwidth, and delay) estab-
lishing paths of the shortest distance, or achieving the fastest or the least congested Internet route to the
destination. However, security mechanisms for converging such high-degree of network efficiency
with the establishment of secure data channels is only currently considered as an add-on and
not inherently engrained as one of the core metrics that can shape the construction of “trustful
service unions”. If data transmission is not sufficiently protected, organizations will sooner or later find
it difficult to protect sensitive information and ensure business continuity and operations - especially, con-
sidering the rise of cyber-threats including BGP hijacking and DDoS attacks. Accordingly, the CASTOR
vision seeks to establish a new Internet architecture providing organizations with secure data
transmission paths on public networks: By advancing the selection of the corresponding Internet
paths by introducing a quantified trust criterion to the corresponding routing decisions. In this
context, CASTOR capitalises different technologies such as trusted computing, trust assessment and
optimization in order to manifest multipath control over zero-trust routing elements. This approach allows
us to define trust in a non-intrusive manner and with enhanced scalability.

CASTOR is envisioning to be the first-of-its-kind to ensure continuous secure data transmission
over trusted paths - going beyond the somewhat static trust properties (primarily integrity) that is con-
sidered by today’s solutions (i.e., including the IETF recommendations on Trusted Path [27] Routing for
enhanced scalability and path control). It extends the Trusted Path Routing (TPR) concept ensuring
the only attested and trustworthy network devices are included in routing decisions. In such a model,
considering the heterogeneity of the underlying infrastructure and (routing) computing resources, is be-
comes apparent that trust levels vary. Towards this end, the existence of various network operators,
that correspond to different trust domains, over which a service may be deployed (necessitating for ser-
vice continuity), requires the implementation of mechanisms for evaluating the level of trust for each party
involved. This evaluation should take into account the dynamic nature of the environment along with its
heterogeneity, particularly in relation to activities involving lifecycle management (i.e., secure enrolment
or deployment) supporting for global but heterogeneous trust. Therefore, to prevent the formation of
deceptive or impractical trust assumptions, it would be advantageous to implement a system founded on
the concept of below-zero-trust, which not only entails a mindset of “never trust, always verify” but also
can cope with frequent fluctuations on the trust level of a routing element which, in turn, might results to
frequent (but trustworthy) routing updates. This approach mandates that every entity involved, whether
physical or virtual, must provide substantiating evidence to establish its trustworthiness, irrespective of
its location within the system. CASTOR adopts the “never trust, always verify ” approach, since it im-

CASTOR D2.1 Public Page III

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

plements security measures at all network and infrastructure levels, regardless of the user or resource’s
location. It treats any user, device, or application attempting to access resources as untrusted and trust
is continuously evaluated based on evidence.

This continuum-wide trust quantification requires advancements in both the infrastructure and network
layer for exposing a computing base (set of security functions) capable of continuous trust characteriza-
tions (so as to be able to enforce trust) while maintaining the existing network agility. The goal is to
identify the optimal network-management decisions over a set of pre-established path profiles (adhering
to different network and trust characteristics) so as to be able to recommend the optimal set of forwarding
paths featuring the required network agility over routing compute elements that can verifiably guarantee
the required (from the SP) level of end-to-end assurance.

The present deliverable sets the foundation for the whole concept of runtime trusted path routing. The
architectural framework revolves around three core layers: (i) the Orchestration that exposes the traffic
engineering calculation and enforcement services; (ii) the Network that exposes the security functions
and trust extensions; and (iii) the Infrastructure/Routing which manifests the dynamic (evidence-based)
trust assessment based on a custom Trusted Computing Base, lightweight enough to be instantiated in
each one of the routing elements. More specifically, D2.1 provides the conceptual CASTOR architecture
and the functional and non-functional requirements along with the requirements derived from the four
use cases that will guide the project’s validation activities. The overall purpose of D2.1 is to serve as a
reference document for the CASTOR project and as a key input to the technical work packages.

This deliverable establishes the technical foundation for CASTOR’s innovations and contributions. It doc-
uments the project’s vision by stating the problem that tackles along with the literature review on several
relevant areas including orchestration, segment routing, trust and risk assessment, runtime monitoring,
cryptographic mechanism, auditing through blockchain infrastructure and optimization techniques. D2.1
also introduces the project’s system model and the CASTOR conceptual architecture, focusing on the
different phases and component interconnection. A more granular architecture, including thorough de-
scriptions of interfaces, message types, and information exchange, will be furnished in the subsequent
deliverables of WP3, WP4, and WP5.

The document also provides the Service Provider’s high-level requirements for mixed-criticality services
as it pertains to route control agility. It highlights both the functional and non-functional requirements
integral to the proposed CASTOR framework. Special attention is given to key aspects such as security,
trust-assessment, operational assurance, trust-aware service assurance as well as traffic engineering
requirements, that are necessary to establish an optimized and trusted communication path.

Moreover, the document goes beyond requirements by providing a comprehensive definition of four use
cases and detailed user stories and scenarios. This use-case-driven approach, in conjunction with the
identified requirements, serves as a foundation for eliciting the timeline for the development of the core
CASTOR integrated framework. In addition, an initial set of KPIs per use case has been devised, hinting
at business and technical indicators that will be tested under the piloting WP of the project.

CASTOR D2.1 Public Page IV

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Contents

1 Introduction 3

1.1 Towards Dynamic Trust Assessment in the Compute Continuum 3

1.2 Scope and Purpose . 4

1.3 Relation to other WPs and Deliverables . 4

1.4 Deliverable Structure . 4

2 CASTOR Vision & Background in Unlocking Scalability, Control and Trustworthiness Agility
in Next-Generation Networks 6

2.1 Vision and Problem Statement in Converging Network Agility with Trusted Path Routing . . 6

2.2 Research Pillars and State-of-the-Art Analysis . 9

2.2.1 Service- and Network-Aware Resource Orchestration 9

2.2.2 Orchestration . 11

2.2.3 Routing Protocols and Source Routing in Segment Routing 13

2.2.4 Dynamic Trust Assessment and Governance . 14

2.2.5 Risk Assessment and Required Trust Level Calculation 16

2.2.6 Establishing Trust in Network Devices with Secure Runtime Monitoring 17

2.2.7 Support for Global but Heterogeneous Trust . 20

2.2.8 Service Certification and Auditing through Blockchain Infrastructure 23

2.2.9 Complex Multi-Constraint and Multi-Objective Optimization Process 24

3 System Model and Assumptions 26

3.1 Conventions and Definitions . 26

3.2 CASTOR as a Trusted Routing Path Extension towards Secure, Reliable Connectivity . . . 28

3.3 Threat Model . 30

4 Extending Trusted Path Routing: Manifesting Evidence-based Theory for Runtime/Explicit
Trust Assessment 32

4.1 Definition of Trust and Trustworthiness . 33

4.1.1 Overall Principles . 33

4.1.2 Trust Properties of Interest in CASTOR . 34

4.2 Elevating Trust metrics as a core enabler in Traffic Engineering Provisioning 35

4.2.1 Current Considerations in Trusted Path Routing . 35

CASTOR D2.1 Public Page V

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

4.2.2 Trust objectives in Service-Level Agreements . 36

4.3 Subjective Logic as a Foundation for Evidence-Based Trust Assessment 37

4.3.1 From Evidence to Opinions . 37

4.3.2 Discounting and Indirect Evidence . 38

4.3.3 Fusion of Multi-Source Evidence . 38

4.4 CASTOR TAF high-level description . 39

4.4.1 The Architecture of the Trust Assessment Framework (TAF) 40

4.4.2 The Local TAF agent . 41

4.4.3 The Global TAF . 43

4.5 Open Questions Relating to Trust Characterisation of Routers, Links and Paths 45

4.5.1 Information Sharing and Trust Models . 45

4.5.2 Managing Computational Dependencies and Discounting 46

4.5.3 Modelling Uncertainty . 47

4.5.4 Challenges in the composition of trust propositions to achieve link and path-level trust 47

4.5.5 Subjective Logic Fusion . 48

5 Multi-Path Control & Agility for Optimal {Network, Trust}-Aware E2E Path Construction 50

5.1 Explicit Path Identification . 51

5.1.1 A Generic Example of Multi-Constraint Optimization Problem Definition 53

5.2 Control Plane: Beaconing for Optimal Forwarding Path Identification 53

6 CASTOR Conceptual Architecture and Functional Components 57

6.1 CASTOR Conceptual Architecture . 57

6.1.1 Preparedness phase . 59

6.1.2 Service Registration phase . 60

6.1.3 Proactive phase . 61

6.1.4 Reactive phase . 62

6.2 CASTOR Functional Components . 64

6.2.1 SLA Translation & Decomposition . 66

6.2.2 CASTOR Orchestration . 67

6.2.3 Distributed Ledger Technologies . 71

6.2.4 CASTOR Risk Assessment Engine . 76

6.2.5 Global and Local Trust Assessment . 81

6.2.6 On-board Finite State Machine Analyser . 86

6.2.7 Optimization Engine . 88

6.2.8 Trustworthy Platform Attestation and TNDI Onboarding/Runtime 90

6.2.9 CASTOR Tracing Capabilities . 93

6.2.10 Composite Attestation . 96

6.2.11 Crypto Structures & Building Blocks . 99

CASTOR D2.1 Public Page VI

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

7 CASTOR Methodology 102

7.1 Methodology for MVP Design . 102

7.1.1 Requirements Definition Process . 103

7.2 Requirements Elicitation Methodology . 103

7.2.1 Technical Requirements Specification Process . 104

7.2.2 Use Case Requirements Specification Process . 104

8 CASTOR Use Cases 107

8.1 High-Level Introduction of the CASTOR Use Cases Towards Trusted Traffic Engineering
process . 107

8.2 Highly Available & Secure Airspace Monitoring in Urban Air Mobility (UAM) Environments . 110

8.2.1 System Model, Communication Interfaces, and Protocols 111

8.2.2 “As-is” Scenario . 114

8.2.3 Collins Use Case needs from CASTOR . 115

8.2.4 To-be Reference Scenario 1: On-Airport Trusted-Routing Loop for Real-Time Surveil-
lance . 116

8.2.5 To-be Reference Scenario 2: Collaborative Airport Operational Control Centres for
Agile Decision Making . 118

8.2.6 Reference Scenario 1 User Stories . 119

8.2.7 Reference Scenario 2 User Stories . 126

8.3 Trustworthy Communications of First Responder Mobile Units and the Compute Continuum 134

8.3.1 “As-is” Scenario . 135

8.3.2 System Model and Communication . 136

8.3.3 Scenario Needs from CASTOR . 139

8.3.4 To-be Reference Scenario 1: Connectivity to V2X PKI over cross-domain path pro-
visioning . 140

8.3.5 To-be Reference Scenario 2: OTA Updates over trustworthy paths 140

8.3.6 Reference Scenario User Stories . 142

8.4 Priority-based Trusted Messaging & Scalable Performance for CCAM Applications 149

8.4.1 “As-is” Scenario . 149

8.4.2 System Model . 149

8.4.3 Scenario Needs from CASTOR . 150

8.4.4 Improved model using CASTOR’s framework . 152

8.4.5 Reference Scenario User Stories . 153

8.5 Future-Proofing Next-Generation Unmanned Aerial Vehicles Communications towards Crit-
ical Infrastructure Sustainability . 157

8.5.1 System Model . 157

8.5.2 “As-is” Scenario . 160

8.5.3 Use Case needs from CASTOR . 161

8.5.4 ”To be” Reference Scenario 1: CASTOR in the Data Network 162

CASTOR D2.1 Public Page VII

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

8.5.5 ”To be” Reference Scenario 2: External Risk Indices as input to CASTOR in Data
Network . 162

8.5.6 Reference Scenario User Stories for Scenarios 1 and 2: CASTOR in the Data Net-
work and Risk-aware Path Selection . 162

8.5.7 ”Nice-to-have” Scenario User Stories: CASTOR in the Shared Back-haul Infrastruc-
ture . 170

8.6 Trust-Aware UAV Data Delivery Across Mobile Edge Attachments 173

9 CASTOR Framework Requirements 176

9.1 Overarching Security Requirements . 178

9.2 Functional and Non-Functional Requirements . 195

9.2.1 Trust Assessment Requirements . 195

9.2.2 Router Operational Assurance . 201

9.2.3 Trust-aware Service Assurance . 204

9.2.4 Traffic Engineering Requirements . 218

10 Summary and Conclusions 221

References 225

CASTOR D2.1 Public Page VIII

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

List of Figures

1.1 Relation of D2.1 with other WPs and Deliverables . 5

2.1 CASTOR Layered Architecture for Extending the Vision of Trusted Path Routing 8

3.1 System Model and key CASTOR values in the Traffic Engineering landscape numbered
from 1 to 9. 29

5.1 Routing topology with network and trust attributes and possible paths satisfying different
policies . 52

6.1 High-level phases in CASTOR framework . 57

6.2 CASTOR high-level architecture . 59

6.3 Translation of intents to enforceable policies . 66

6.4 Orchestration flow of actions when there is an intent-based service order 68

6.5 Orchestration flow of actions when a node joins the network 68

6.6 Orchestration flow of actions when a node leaves/drops the network 69

6.7 PCE Extension . 71

6.8 CASTOR DLT flow of actions - Storage of SLAs and SSLAs 74

6.9 CASTOR DLT flow of actions - Recording of Trust Policies 75

6.10 CASTOR DLT flow of actions - Abstraction of Trust Capabilities 76

6.11 Phase 1: CASTOR router type onboarding & RTL Calculation 79

6.12 Phase 2: Topology Integration & Cascading Attack Analysis 81

6.13 CASTOR TAF design phase . 83

6.14 CASTOR TAF router deployment phase . 85

6.15 CASTOR TAF runtime phase . 86

6.16 Onboard Finite State Machine analyser flow of actions . 88

6.17 Optimization Engine action flow . 89

6.18 TNDE and TNDI flows during join and onboarding phases (attestation and configuration) . 91

6.19 TNDE and TNDI flows during the runtime phase (trust assessment and data sharing) . . . 93

6.20 CASTOR’s multi-level tracing architecture proposal . 94

6.21 The workflow of composite attestation . 97

6.22 The structure of layered attestation . 98

6.23 The workflow of ORE in CASTOR for different domains . 99

CASTOR D2.1 Public Page IX

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

8.1 Deployment of Key System Components . 112

8.2 Flight Plan Registration Information Flow . 113

8.3 Unmanned Airspace Surveillance Information Flow . 114

8.4 Identification of airspace threat potentially compromised 116

8.5 The Surveillance Continuum . 117

8.6 Multiple airspace domains require coordination and cooperation 118

8.7 Current Inter-Zone Data Exchange Model . 119

8.8 Exchanging trust assessments with data can improve operational security and efficiency . 119

8.9 Normal behaviour without CASTOR . 120

8.10 Attack behaviour without CASTOR . 121

8.11 Attack prevented from starving CISP of attack-revealing data 124

8.12 Significant ATL degradation results in operator notification 125

8.13 Zone B has no insights into the trust provenance of data consumed from the CISP 128

8.14 Zone B now has insights into the trust provenance of data consumed from the CISP 130

8.15 Instead of applications tagging with trust indicator, receiver can query origin trustworthiness 133

8.16 The big picture of C-Roads topology of European C-ITS systems 134

8.17 End-to-end communication topology of vehicles and C-ITS service access 137

8.18 Functional architecture of hybrid C-ITS network adopted to CASTOR 139

8.19 C-ITS service access enhanced by CASTOR . 141

8.20 UC2.US1a Workflow . 144

8.21 UC2.US.2 Workflow . 147

8.22 UC2.US3 Workflow . 148

8.23 Illustration of the network path for CAM and DENM messages 151

8.24 Message routing using CASTOR’s framework . 152

8.25 UC3.US1 Workflow . 154

8.26 UC3.US2 Workflow . 155

8.27 UC3.US3 Workflow . 156

8.28 UAV-related System Model . 158

8.29 The communication flow in UC4 . 159

8.30 Sequence Diagram of UC4.US1a - Nominal operation . 164

8.31 US4.US1b: Fallback SSLA . 166

8.32 UC4.US1c: SSLA compliance report . 168

8.33 UC4.US2a: Risk Index . 169

8.34 UC4.US3a: Nominal Operation . 171

8.35 Workflow of UC4.UC3b . 172

8.36 PoC Scenario . 173

CASTOR D2.1 Public Page X

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

List of Tables

4.1 Contextual properties of trust. 35

6.1 CASTOR Artifacts - Naming convention . 65

6.2 Comparison of the Trace Units considered for CASTOR. 95

8.1 UC1 - Highly Available & Secure Airspace Monitoring in Urban Air Mobility (UAM) Environ-
ments . 108

8.2 UC2 - Trustworthy Communications of First Responder Mobile Units and the Compute
Continuum . 109

8.3 UC3 - Priority-based Trusted Messaging & Scalable Performance for CCAM Applications . 109

8.4 UC4 - Future-Proofing Next-Generation Unmanned Aerial Vehicles Communications to-
wards Critical Infrastructure Sustainability . 110

8.5 Short Glossary of Terms from Airspace Management . 110

8.6 Network and Trust properties as service-level objectives 116

8.7 Reference Values for Use Case 1, Scenario 1 . 121

8.8 CASTOR KPIs for Use Case 1, Scenario 1, User Story 1(b) 122

8.9 CASTOR KPIs for Use Case 1 - User Story 1(c) NetOps Alerting 126

8.10 Reference Values for Use Case 1, Scenario 2 . 128

8.11 CASTOR KPIs for Use Case 1, Scenario 2, User Story 2(b) 130

8.12 CASTOR KPIs for Use Case 1, Scenario 2, User Story 2(c) 133

8.13 Network and Trust properties as service-level objectives 140

8.14 CASTOR KPIs for User Story UC2.US1a . 144

8.15 CASTOR KPIs for User Story UC2.US1b . 145

8.16 CASTOR KPIs for user story UC2.US2 . 147

8.17 CASTOR KPIs for user story UC2.US3 . 149

8.18 Cause description triggering generation and transmission of DENM message [4] 150

8.19 Network and Trust properties as service-level objectives 153

8.20 Quantitative KPIs for user story UC3.US1 - Traffic Operator 156

8.21 Qualitative KPIs for user story UC3.US1 - Traffic Operator 156

8.22 Quantitative KPIs for user story UC3.US2 - Emergency Operator 156

8.23 Qualitative KPIs for user story UC3.US2 - Emergency Operator 157

8.24 Quantitative KPIs for user story UC3.US3 - VRU . 157

CASTOR D2.1 Public Page XI

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

8.25 Qualitative KPIs for user story UC3.US3 - VRU . 157

8.26 Network and Trust properties as service-level objectives 161

8.27 Reference Values for user story UC4.US1a . 164

8.28 CASTOR KPIs for user story UC4.US1b . 166

8.29 CASTOR KPIs for user story UC4.US1c . 168

8.30 CASTOR KPIs for user story UC4.US2a . 170

8.31 Reference Values for user story UC4.US3a . 171

8.32 CASTOR KPIs for user story UC4.US3b . 173

9.1 Functional & Non-functional Requirement Categories . 177

9.2 SR.1 Device-support for Hardware-based Root of Trust . 178

9.3 SR.2 HW-based Isolation of CASTOR’s device-side TCB Components 178

9.4 SR.3 Secure Device Key Management with Platform and TNDI Binding Support 179

9.5 SR.4 Runtime Configuration Integrity Check of Routing Plane Sw/Hw Stack 180

9.6 SR.5 Dynamic Security Function Placement . 182

9.7 SR.6 Onboarding of Network Devices and their TNDIs into CASTOR 183

9.8 SR.7 Secure E2E CASTOR-to-Device Control and Data Channels 184

9.9 SR.8 Secure and Efficient Cryptography . 185

9.10 SR.9 Secure Reporting of Traces and Trustworthiness Data 186

9.11 SR.10 Secure Link Establishment between TNDIs . 187

9.12 SR.11 Secure Runtime Tracing Support of TNDIs . 188

9.13 SR.12 Composition of Trustworthiness Evidence . 189

9.14 SR.13 Runtime Operational Assurance and Process Execution Integrity Checks 190

9.15 SR.14 Ordering of Attestation Evidence . 191

9.16 SR.15 Secure Data Handling and Provenance . 192

9.17 TAF.R.1 Generalizability . 195

9.18 TAF.R.2 Correctness . 196

9.19 TAF.R.3 Robustness and Resilience . 197

9.20 TAF.R.4 Flexibility of Trust Sources . 198

9.21 TAF.R.5 Performance of trust evaluations . 199

9.22 TAF.R.6 Scalability . 200

9.23 TNDE.R.1 Management of Network Device TNDIs . 201

9.24 TNDE.R.2 Dynamic Setup and Configuration of the TNDE and TNDIs (Re-/Programmability)201

9.25 FSM.R.1 Model optimisation and specialisation . 202

9.26 FSM.R.2 Model explainability . 203

9.27 OSS.R.1 Secure Remote Asset Management and Reconfiguration Effectiveness 204

9.28 OSS.R.2 Trust- and Policy-driven Orchestration and Service Placement 205

9.29 OSS.R.3 Accurate and fresh synchronization of the network topology attributes and trust
assurance reports . 206

CASTOR D2.1 Public Page XII

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.30 OPT.R.1 Trusted Path Optimization . 207

9.31 OPT.R.2 Network and attestation information . 207

9.32 OPT.R.3 Multi-path computation . 208

9.33 OPT.R.4 Re-optimization . 208

9.34 OPT.R.5 Optimization Scalability . 209

9.35 RA.R.1 RTL Derivation and Management . 209

9.36 RA.R.2 Cascading Attack Detection . 210

9.37 RA.R.3 Black-box risk analysis . 212

9.38 POLICY.R.1 Intra-domain translation to SLA (SSLA) and policies 213

9.39 POLICY.R.2 Cross-domain translation to SLA (SSLA) and policies 213

9.40 DLT.R.1 Secure Storage of Security Claims . 214

9.41 DLT.R.2 Authentication & Authorization in CASTOR Blockchain 215

9.42 DLT.R.3 Secure Oracle . 216

9.43 DLT.R.4 Network Trust Exposure Capability . 217

9.44 TE.R.1 Automated Traffic Engineering TE capabilities (to cope with network conditions
dynamicity) . 218

9.45 TE.R.2 Constraint-based path computation capabilities (for domain-wide traffic) 218

9.46 INTER-DOM.TE.R.1 Trust summary exchange . 219

CASTOR D2.1 Public Page XIII

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Versioning and contribution history

Version Date Author Notes
v0.1 13.2.2025 Nikos Fotos (UBITECH) Table of Contents
v0.2 28.2.2025 Michael McElligott (COLLINS),

Vlad Chiriac (TUIASI), Gergely
Kovacs (COMMSIGNIA), Ioannis
Boukas, Evangelos Syrmos (K3Y)

First input on use cases (AS-IS Scenario and TO-BE sce-
nario)

v0.3 17.3.2025 ALL First input on Threat Modelling (Chapter 3)
v0.4 31.3.2025 ALL First consolidated input on State-of-the-Art analysis
v0.5.1 28.4.2025 ALL First round of Sequence Diagrams in Chapter 6
v0.5.2 5.5.2025 ALL Revised input in use cases: AS-IS Scenario descriptions,

and identification of use case needs from CASTOR
v0.6.1 19.5.2025 ALL Updates to Sequence Diagrams in Chapter 6
v0.6.2 26.5.2025 Michael McElligott (COLLINS),

Vlad Chiriac (TUIASI), Gergely
Kovacs (COMMSIGNIA), Ioannis
Boukas, Evangelos Syrmos (K3Y)

First input on use cases (AS-IS Scenario and TO-BE sce-
nario) & Updates to use case descriptions and trust as-
sessment properties of interest per scenario

v0.6.3 9.6.2025 Anuj Pathania, Andy Pimentel
(UvA), Theo Dimitrakos (UKENT)

First input on problem statement for optimization in traffic
engineering. Complete first consolidated problem state-
ment for Trust Assessment.

v0.7.0 30.6.2025 Yalan Wang (SURREY), Fabian
Schwarz (NVDIDIA)

Updates to SotA and in-router CASTOR architecture and
crypto primitives description.

v0.7.1 14.6.2025 Iasonas Sakellariou, Symeon
Tsintzos (QUBITECH)

Review problem statement in Chapter 4, and provide com-
ments to the document.

v0.7.2 21.6.2025 Anuj Pathania Resolve comments and update problem statement in
Chapter 4 and description of optimization-related se-
quence diagrams in Chapter 6.

v0.7.3 14.7.2025 Alexandru Coles, (ORO) Reviewed
System Model and conventions in
Chapter 3.

v0.7.4 28.7.2025 ALL Updates to sequence diagram descriptions based on lat-
est advancements in architecture.

v0.8.0 8.9.2025 Nikos Fotos, Thanassis Giannet-
sos (UBITECH)

Provide updates to the architecture diagram based on the
incorporation of the four CASTOR phases. Include refine-
ments to the interactions with the Optimization Engine.

v0.8.1 22.9.2025 ALL Final refinements on all sequence diagrams in Chapter 6.
Updates to System Model (Threat Model) in Chapter 3.

v0.8.2 6.10.2025 Nikos Fotos (UBITECH) Included template for Functional Requirements to include
relevant background and definition information in Chapter
9.

v0.8.3 13.10.2025 ALL First input on Functional Requirements, and a first set of
KPIs per technical artifact

v0.8.4 20.10.2025 Michael McElligott (COLLINS),
Vlad Chiriac (TUIASI), Gergely
Kovacs (COMMSIGNIA), Ioannis
Boukas, Evangelos Syrmos (K3Y)

Final polishing on the Use Case User Stories

v0.8.5 27.10.2025 ALL Final descriptions on Functional Requirements, and con-
solidated KPIs in Chapter 9.

CASTOR D2.1 Public Page 1 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

0.8.6 31.10.2025 ALL Resolve comments from internal review in Chapters 2 and
6.

v0.9.0 3.11.2025 Nikos Fotos Update Use Case User Story template to incorporate
KPIs.

v0.9.1 10.11.2025 Nikos Fotos, Thanassis Gian-
netsos (UBITECH), Jamie Pont
(KENT), Yalan Wang, Liqun Chen
(SURREY)

Refinements to open challenges of the Trust Assessment
problem statement in Chapter 4. Revision to composite at-
testation schemes: update references to for multi-ordered
signatures.

v0.9.2 17.11.2025 Nikos Fotos, Sofianna Men-
esidou, Thanassis Giannetsos
(UBITECH)

Polishing on the System Model description: Revised Fig-
ure and assumptions/considerations in Chapter 3. First
draft of Problem Statement and Vision of CASTOR in
Chapter 1.

v0.9.3 24.11.2025 Michael McElligott (COLLINS),
Vlad Chiriac (TUIASI), Gergely
Kovacs (COMMSIGNIA), Ioannis
Boukas, Evangelos Syrmos (K3Y)

Final Updates to KPIs on Engineering Stories

v1.0 24.11.2025 (Nikos Fotos, Thanassis Gian-
netsos, Sofianna Menesidou
(UBITECH)

Final polishing round on Architecture and final updates in
PoC description

1.1 1.12.25 Daphne Galani (UBITECH) Final Review & Submission

CASTOR D2.1 Public Page 2 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 1

Introduction

1.1 Towards Dynamic Trust Assessment in the Compute Contin-
uum

The advancement of on-device edge technologies is enabling substantial computational capacity across
a wide range of devices, including network equipment and routers. This shift makes it possible to com-
bine on-device edge resources with other forms of edge computing and diverse cloud services within
collaborative computing environments. However, integrating heterogeneous computing resources with
varying network capabilities requires intelligent orchestration—one that can also optimize for security
and sustainability. As hybrid networks, edge computing, and full cloud migration reshapes connectivity
infrastructure, both network equipment and services are at risk [62].

Since we are currently transitioning toward these Connected Collaborative Computing (3C Network) envi-
ronments, it is essential to investigate the emerging technological challenges associated with this transfor-
mation. This transformation stimulates new applications that need intelligence and strong requirements
regarding the content delivery networks in the edge and far edge to run in a completely decentralized
and distributed manner. These demands have accelerated the transition toward shared infrastructures,
thereby the adoption of virtualized software functions. We are moving away from the traditional segmen-
tation model, where each administrative domain maintained its own routing topologies, infrastructure, and
security solutions, to shared infrastructures where multiple network operators deploy services and routing
capabilities through a virtualization layer (i.e., virtual network functions).

All these developments intensify the need for Trusted Path Routing (TPR). This problem, already acknowl-
edged within the IETF, aims to engender trust as a core dimension that influences the traffic engineering
process. The goal is to ensure that services traverse infrastructure that provides not only the required
network flexibility but also strong guarantees of trustworthiness. In general, most works that consider
trustworthiness focus only on the integrity. However, integrity is not the only trust property, but several
other properties exist such as safety, reliability, resilience, etc. In addition, capturing such an extensive
set of properties is not possible with traditional cryptography.

Towards this direction, CASTOR significantly advances the state of the art by introducing a set of
mechanisms that act as verticals, enabling a more effective capture of the traffic engineering pro-
cess. Its innovation is two-fold: (a) adapting to trust changes and modelling the trust state, and (b)
recommending an optimal set of paths. Deliverable D2.1 focuses on the first innovation and out-
lines the architecture that captures all relevant building blocks and their interdependencies required
to adapt to dynamic trust changes. Consequently, D2.1 provides network and security mechanisms
that complement routing solutions to support device connectivity over trustworthy routers and related
infrastructure.

CASTOR D2.1 Public Page 3 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

1.2 Scope and Purpose

This deliverable plays a foundational role within CASTOR, setting forth the essential technical require-
ments that have shaped the architectural framework of CASTOR. Beyond functional requirements, CAS-
TOR incorporates non-functional requirements, particularly concerning security, trust, operational and
traffic engineering aspects across the Compute Continuum.

This deliverable dives deep into the conceptual architecture, functional components, and their vital inter-
connections, offering an extensive exploration of the CASTOR framework’s design capturing also all
operational flows. The research carried out in this document not only provides in-depth insights into
CASTOR but also highlights its significance in various use cases, reference scenarios and the user
stories to be investigated within these scenarios.

This first deliverable concentrates, due to the complexity, primarily on intra-domain aspects to fully doc-
ument the operational flows, while sets the scene for the next iteration in D2.2, which will address the
remaining open questions related to inter-domain operational flows.

1.3 Relation to other WPs and Deliverables

As the reference architecture and technical requirements deliverable, this deliverable serves as the ba-
sis for all later WPs and deliverables. This first initial version of the deliverable includes the complete
documentation of the CASTOR requirements of T2.1, the CASTOR reference architecture of T2.2, the
classification and analysis of the threat landscape of T2.3 and the analysis of the type of secure elements
existing for the heterogeneous type of continuum elements (from the far-edge to the edge and to the
routing plane of T2.5 until M12.

D2.1 provides to WP3 the definition of requirements and the high-level CASTOR architecture of the in-
router artifacts, including the CASTOR Trust Sources. This will assist the detailed threat model analysis
and the mapping of threats to the respective evidence that needs to be collected by the CASTOR Trust
Sources and to be documented in D3.1. Also, D2.1 provides to WP4 the definition of overarching CAS-
TOR TAF challenges, and requirements that need to be addressed towards a compute continuum-wide
and federated trust decisions based on the evidence-based ATL and the risk-aware Required Trust Level
(RTL) values. Finally, WP5 and WP6 will also be fed with the requirements and challenges towards the
optimal selection of trust-aware traffic engineering policies and the use case definition and requirements
respectively. In addition, D2.1 constitutes the baseline for Milestone MS1 - Availability of CASTOR Ref-
erence Architecture & Operational Landscape to be met by the CASTOR framework, as it delivers the
architectural specification of the CASTOR architecture.

The final version of this deliverable (D2.2) will be provided during M24 and will include the complete
developments of T2.2-T2.5, including the harmonized Trustworthiness Profiles capturing the trustworthi-
ness controls required and potential updates on the requirements, KPIs and the reference architecture
considering also the cross-domain end-to-end service provisioning. The inter-dependencies among the
CASTOR WPs are shown in Figure 1.1.

1.4 Deliverable Structure

Chapter 2 provides the vision of CASTOR, documenting the problem that tackles along with the back-
ground and state-of-the-art analysis on several relevant areas such as orchestration, segment routing,
trust and risk assessment, runtime monitoring, cryptographic mechanism, auditing through Blockchain
infrastructure and optimization techniques. Chapter 3 describes the system model and threat landscape

CASTOR D2.1 Public Page 4 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 1.1: Relation of D2.1 with other WPs and Deliverables

analysis in order to set the scene for the key contributions of CASTOR in the context of traffic engineering
and the underlying threats to be considered. Chapter 4 focuses on the concepts of trust and trustworthi-
ness and the CASTOR Trust Assessment Framework (TAF) and discusses the key challenges and open
questions for bringing such a framework in the routing plane. Chapter 5 elaborates on the problem of
trusted path routing optimization and discusses the key challenges and open questions on how to solve
multi-objective problems that include both trust and network metrics. Chapter 6 building on top of the
system model, describes in detail the conceptual architecture including the different phases, the func-
tional components and the core functional objectives of the project. The overall methodology of defining
the CASTOR Minimum Viable Product (MVP) along with the requirements is presented in Chapter 7.
Chapter 8 outlines the four use cases of different application domains in detail, including the reference
scenarios adopted by each demonstrator. The user stories from which the requirements will be drawn
as part of the scenarios are described in detail and will govern the demonstrations of the CASTOR. This
chapter also sets the scene for the cross domain evaluation.Chapter 9 serves with detailed lists of the
functional and non-functional technical requirements (e.g., security, trust, operational assurance and traf-
fic engineering) that will assist on the detailed functional specification that will be done on the technical
deliverables, and Chapter 10 concludes the deliverable.

CASTOR D2.1 Public Page 5 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 2

CASTOR Vision & Background in Unlocking
Scalability, Control and Trustworthiness
Agility in Next-Generation Networks

2.1 Vision and Problem Statement in Converging Network Agility
with Trusted Path Routing

Routing decisions determine the way information flows throughout the Internet and shape the perfor-
mance and quality of globally-deployed services. Routing traditionally amounts to the way that network
data packets are steered from their origin to their destination over topologies made up by interconnected
network devices (i.e., routers) [89]. Typically, in IP networks, the original data are broken down to pack-
ets tagged with headers containing the destination IP address. To steer the flow of packets, network
routers examine each packet’s address and determine the next hop to the desired destination based on
appropriately-updated routing tables. The process scales across numerous (at the order of thousands or
millions) network devices to finally offer the global-scale delivery of Internet data flow.

Each selected path can be shaped by diverse criteria (such as hop count, bandwidth, and delay) estab-
lishing paths of the shortest distance, or achieving the fastest or the least congested Internet route to the
destination. However, security mechanisms for converging such high-degree of network efficiency
with the establishment of secure data channels is only currently considered as an add-on and
not inherently engrained as one of the core metrics that can shape the construction of “trustful
service unions”. If data transmission is not sufficiently protected, organizations will sooner or later find
it difficult to protect sensitive information and ensure business continuity and operations - especially, con-
sidering the rise of cyber-threats including BGP hijacking and DDoS attacks. Accordingly, the CASTOR
vision seeks to establish a new Internet architecture providing organizations with secure data
transmission paths on public networks: By advancing the selection of the corresponding Internet
paths by introducing a quantified trust criterion to the corresponding routing decisions.

While in early days of (local) networks, routing was statically determined by network administrators who
manually configured the routing tables, the explosion of Internet (at around three decades ago) rendered
this approach obsolete, if not infeasible; a single link failure or a topology update required human in-
tervention leading to unacceptably slow convergence. Dynamic routing protocols such as the Distance
Vector instances [e.g., RFC 1058: Routing Information Protocol] were then introduced. The concept
suggests that routers periodically exchange a copy of the entire routing table with their immediate neigh-
bours. This simple-to-implement approach allowed for a distance metric (i.e., hopcount), often proved
insufficient, while suffering from slow convergence and issues such as the “count-to-infinity” pertaining to
the potential occurrence of routing loops after a link failure.

CASTOR D2.1 Public Page 6 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Link state protocols such as Open Shortest Path First (OSPF) [IETF RFC 1131] and Intermediate Sys-
tem to Intermediate System (IS-IS) [IETF RFC 1195 and ISO 10589] were developed and introduced in
late 80s and early 90s. The involved concept had each router broadcasting information about its directly
connected links (marking its “state”) to every router located within its administrative domain, typically de-
fined as Autonomous System (AS); the network area where the same routing protocol is used. Availing
information for the complete network map, each router can independently participate to complex algo-
rithms (like Dijkstra’s algorithm) and calculate the “best path” to every network destination. Their fast
convergence and increased scalability properties render that kind of protocols as the dominant solutions
for routing in enterprise and Internet Service Provider (ISP) networks.

Moving beyond a single Autonomous System (AS) constituted the latest development of the Internet rout-
ing fundamentals. The need to interconnect thousands of independent ASes, shaping the global Internet
has been addressed by the Border Gateway Protocol (BGP) [IETF RFC 4271: A Border Gateway Pro-
tocol 4]. It is an instance of Path Vector protocols, having the entire sequence of ASes that should be
crossed to reach the destination (AS), advertised across domains. BGP allows for policy-driven routing
shaped by business agreements (e.g., on transit costs) between ISPs, rather than solely technical met-
rics. Sharing reachability information through BGP offers the glue ingredient that holds the entire public
Internet together.

The CASTOR approach seeks to capitalise on the aforementioned (mature) routing technologies,
adopting a more NFV-like approach. The increasingly pervasive network virtualisation technologies
call for a ”transformation” of proprietary network hardware operations to Virtualized Network Functions
(VNFs) that would automate the entire lifecycle of the CASTOR (virtualized) routing services. With vir-
tualization technologies, a router’s control plane (which runs the routing protocols like OSPF, IS-IS, and
BGP) is decoupled from the data plane (or forwarding plane) that operates for forwarding the packets. An
orchestration software can offer the ability to automate (Section 6.2.2) and centralize (Section 6.2.2.1)
the complex CASTOR logic that would (traditionally) require to be manually engineered.

CASTOR is envisioning to be the first-of-its-kind to ensure continuous secure data transmission
over trusted paths - going beyond the somewhat static trust properties (primarily integrity) that is con-
sidered by today’s solutions (i.e., including the IETF recommendations on Trusted Path [27] Routing and
SCION [22] protocol for enhanced scalability and path control). It extends the Trusted Path Routing (TPR)
concept ensuring the only attested and trustworthy network devices are included in routing decisions. In
such a model, considering the heterogeneity of the underlying infrastructure and (routing) computing re-
sources, is becomes apparent that trust levels vary. Towards this end, the existence of various network
operators, that correspond to different trust domains, over which a service may be deployed (necessi-
tating for service continuity), requires the implementation of mechanisms for evaluating the level of trust
for each party involved. This evaluation should take into account the dynamic nature of the environment
along with its heterogeneity, particularly in relation to activities involving lifecycle management (i.e., se-
cure enrolment or deployment) supporting for global but heterogeneous trust. Therefore, to prevent
the formation of deceptive or impractical trust assumptions, it would be advantageous to implement a sys-
tem founded on the concept of below-zero-trust, which not only entails a mindset of “never trust, always
verify ” but also can cope with frequent fluctuations on the trust level of a routing element which, in turn,
might results to frequent (but trustworthy) routing updates. This approach mandates that every entity in-
volved, whether physical or virtual, must provide substantiating evidence to establish its trustworthiness,
irrespective of its location within the system. CASTOR adopts the “never trust, always verify” approach,
since it implements security measures at all network and infrastructure levels, regardless of the user or
resource’s location. It treats any user, device, or application attempting to access resources as untrusted
and trust is continuously evaluated based on evidence.

Each forwarding element is evaluated by a Verifier prior to its inclusion in a trusted network domain.
Evidence about the device’s integrity is assessed to determine its eligibility for participation in the rout-
ing topology. While this enrolment-time verification establishes a baseline of trust, it does not
account for the fact that a device’s trustworthiness may change over time. If a device becomes

CASTOR D2.1 Public Page 7 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 2.1: CASTOR Layered Architecture for Extending the Vision of Trusted Path Routing

misconfigured, compromised, or enters a degraded trust state after initial enrolment, this change should
be reflected in the trusted path routing decisions. The TPR model [27], as currently defined, provides no
mechanism to detect or respond to such changes. Extending it with a runtime trust assessment phase
raises several open issues that we need to resolve. This constitutes one of the core challenges that CAS-
TOR aims to address (Section 2.2.7.2) for the employment of a generic trust assessment methodology
capable of continuous (real-time) trust evaluation and quantification. Trustworthiness is one of the main
research challenges in the flagship effort of the 3CN Project (unlocking the vision of “Collaborative, Cog-
nitive Computing over Shared Infrastructures”) and it constitutes a basic foundation towards fulfilling the
vision of a complete zero trust security model for building service-graph-chains and service unions with
high Level of Trust (LoT) and Level of Assurance (LoA). This can be manifested by CASTOR capabilities
for assessing the trust level of all elements (Figure 2.1) expanding throughout the service application and
network layers (assessing the LoA of all network infrastructure elements including hardware and virtual-
ization platforms as well as all VNFs) all the way down to the infrastructure layer for enabling trustworthy
network decisions. This continuum-wide trust quantification requires advancements in both the infras-
tructure and network layer for exposing a computing base (set of security functions) capable of continuous
trust characterizations (so as to be able to enforce trust) while maintaining the existing network agility. The
goal is to identify the optimal network-management decisions over a set of pre-established path profiles
(adhering to different network and trust characteristics) so as to be able to recommend the optimal set of
forwarding paths featuring the required network agility over routing compute elements that can verifiably
guarantee the required (from the SP) level of end-to-end assurance.

As will be seen later on (Section 2.2), we have witnessed advancements with respect to trust evaluations
in both cloud environments (e.g., evaluating the trustworthiness of Virtual Network Functions in central
B5G/6G deployments) and far-edge ecosystems (e.g., ensuring the trustworthiness of the data integrity
used as part of V2X cooperative communication). However, one of CASTOR’s key objectives is to bridge
the two ends of the Compute Continuum by introducing the concepts of continuous and dynamic trust
evaluations in the routing plane.

CASTOR D2.1 Public Page 8 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

2.2 Research Pillars and State-of-the-Art Analysis

2.2.1 Service- and Network-Aware Resource Orchestration

2.2.1.1 Services and Intents

The concept of ”intent” was first introduced in RFC 7575 [107] within the context of Autonomic Network-
ing, where it is defined as “an abstract, high-level policy used to operate the network”. According to this
definition, an intent represents a user-supplied directive (e.g., policy) that guides an Autonomic Network,
which would otherwise function without human intervention. However, to prevent the term from being
used merely as a synonym for policy, it is necessary to establish a clear distinction between intent and
other policy types. An intent expresses the desired state of a system and is used to describe an expected
network or service. Intents neither specify concrete configurations nor prescribe the management tasks
to be performed by a system. Instead, they enable consumers to request networks and services without
requiring detailed knowledge of how those outcomes will be realized. This implicitly assumes that the
system can infer the behavior of networks and services, applying intelligence and automation to satisfy
the intent. This not only relieves the consumer of the burden of knowing implementation details but also
provides flexibility allowing the producer to explore alternative options to find optimal solutions. An in-
tent is a set of expectations including requirements, goals, conditions and constraints given to a system,
without specifying how to achieve them. The main characteristics of an intent are:

• An intent is typically understandable by humans, and needs to be interpreted by a machine
without any ambiguity.

• An intent focuses on describing ”what” needs to be achieved, and not ”how” the outcomes should
be achieved. This is in contrast to a rule (focus on ”how”) which specifies the explicit logics or
formula to be executed, and to a policy (focus on ”what” + ”how”) which specifies the action(s) to be
taken and the conditions under which they should be taken.

Intent-Based Management aims to lead towards networks that are significantly simpler to manage and
operate, requiring only minimal external intervention. Even autonomic networks are not clairvoyant: they
cannot inherently discern operational objectives or determine which service instances they should sup-
port. In other words, a network has no intrinsic awareness of the provider’s goals—the intent that gives
the network its purpose. These goals must therefore be communicated explicitly as intent. That being
said, the concept of intent is not limited just to autonomic networks, such as networks that feature an Au-
tonomic Control Plane [37], but applies to any network. Examples like the hierarchical schema to support
different roles related to 5G networks and network slicing management defined in 3GPP, where different
intents could be considered, being used for supporting different interactions, specifically:

• Intent-CSC: from Communication Service Customer (CSC) to the Communication Service Provider
(CSP) to express properties of a communication service, e.g. ‘Enable a V2X communication service
for a group of vehicles in specific time with low latency’.

• Intent-CSP: from CSP to a Network Operator (NOP) to express properties of the CSP’s desired
network, e.g., ‘a network slice supporting V2X communications.

• Intent-NOP: from NOP to a Network Equipment Provider (NEP) to express characteristics of a
RAN and/or 5GC network, e.g., specifying ‘coverage requirements and UE throughput requirement
in certain area’.

Intent can also be used to manage and control of closed-loop automation, which means the intent can be
translated to policies and management tasks.

CASTOR D2.1 Public Page 9 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

However, intents traditionally overlook the notion of trust, leaving a gap in how systems evaluate the
conditions under which actions should be taken.

2.2.1.2 Service Models

A service model represents a service delivered by a network to a user. As defined in RFC 8309 [142],
such a model describes the service and its parameters in a portable, implementation-agnostic manner,
enabling its use independently of the underlying equipment or operational environment in which the ser-
vice is realized. Two subcategories are distinguished:

• a ”Customer Service Model” describes an instance of a service as provided to a customer, possi-
bly associated with a service order

• and a ”Service Delivery Model” describes how a service is instantiated over existing networking
infrastructure.

Realizing service models requires a system, typically a controller, that implements the provisioning logic.
This includes decomposing high-level service abstractions into lower-level device constructs, identifying
and allocating the necessary resources, and orchestrating the sequence of provisioning actions. Orches-
tration is generally performed using a ”push” model, in which the controller/manager initiates operations,
distributes the required configurations to devices, and verifies that the resulting operational or derived
states align with the intent/desired state. Beyond initial instantiation, the system must also support updat-
ing, modifying, and decommissioning service instances. The device itself typically remains agnostic to
the service or the fact that its resources or configurations are part of a service/concept at a higher layer.

Instantiated service models map to corresponding instances of lower-layer network and device models
(e.g., specific path instances or particular port configurations). A service model also captures the de-
pendencies and layering of services over the lower-layer networking resources that support them. This
facilitates management by allowing to follow dependencies for troubleshooting activities and to perform
impact analysis in which events in the network are assessed regarding their impact on services and cus-
tomers. Services are typically orchestrated and provisioned top to bottom, which also facilitates keeping
track of the assignment of network resources (composition), while troubleshooted bottom up (decom-
position). Service models might also be associated with other data that does not concern the network
but provides business context. This includes things such as customer data (such as billing information),
service orders and service catalogues, tariffs, service contracts, and Service Level Agreements (SLAs),
including contractual agreements regarding remediation actions. An example of a data model that pro-
vides a mapping for customer service models (e.g., the L3VPN Service Model) to Traffic Engineering
(TE) models (e.g., the TE Tunnel or the Abstraction and Control of Traffic Engineered Networks Virtual
Network model) is the Service Mapping YANG Data Model [92]. Like intents, service models provide
higher-level abstractions of network functionality. They are often accompanied by mappings that cap-
ture the relationships between service-level constructs and underlying device or network configurations.
Unlike intents, however, service models do not define a desired outcome that an Intent-Based System
(IBS) can automatically maintain. Instead, their management relies on the design and implementation of
sophisticated algorithms and control logic by network providers or system integrators.

Building on the concept of intents, service models require a language, such as the YANG data model,
that apart from the network metrics incorporate also the notion of trust.

CASTOR D2.1 Public Page 10 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

2.2.1.3 Intent-Based Networking - Functionality

Intent-Based Networking (IBN) ([48]) is a paradigm in which network behavior is guided by high-level
objectives, or intents, rather than low-level configurations. In IBN, users or applications specify the de-
sired outcomes for the network, and the system automatically translates these intents into the appropriate
network policies, configurations, and actions. This approach abstracts away implementation details, en-
abling networks to operate with minimal human intervention while maintaining flexibility and adaptability.
By focusing on what the network should achieve rather than how to achieve it, IBN supports automated
provisioning, dynamic optimization, and more effective management of complex network environments.
IBN involves a wide variety of functions that can be roughly divided into two categories:

• Intent Fulfilment provides functions and interfaces that allow users to communicate intent to the
network and that perform the necessary actions to ensure that intent is achieved. This includes
algorithms to determine proper courses of action and functions that learn to optimize outcomes
over time. In addition, it also includes functions such as any required orchestration of coordinated
configuration operations across the network and rendering of higher-level abstractions into lower-
level parameters and control knobs.

• Intent Assurance provides functions and interfaces that allow users to validate and monitor that
the network is indeed adhering to and complying with intent. This is necessary to assess the
effectiveness of actions taken as part of fulfilment, providing important feedback that allows those
functions to be trained or tuned over time to optimize outcomes. In addition, Intent Assurance is
necessary to address ”intent drift.” Intent is not meant to be transactional, i.e., ”set and forget”, but
is expected to remain in effect over time (unless explicitly stated otherwise). Intent drift occurs when
a system originally meets the intent, but over time gradually allows its behaviour to change or be
affected until it no longer does or does so in a less effective manner.

The key challenge is bridging the worlds of IBN and trust, enabling networks to reason about and act
upon trust-aware intents. While the incorporation of trust into intents lies beyond the current scope of
CASTOR, the project will develop languages to translate and quantify trust trust as part of the service
model, providing crucial stepping stones toward this goal.

2.2.2 Orchestration

The orchestration layer offers great potential to seamlessly manage diverse domains and, due to the
wide range of possibilities it provides, it has attracted the attention of the scientific community. In [39], an
orchestration model is proposed, focusing on providing high availability for service function chains, where
multiple Virtual Network Functions (VNFs) that perform the same function but with different roles (Master
or Slaves) are instantiated on distinct servers, generating multiple paths for delivering the same service.
Service orchestration in virtualized networks can leverage NFV-MANO framework to automate lifecycle
management of network services, from instantiation to scaling and healing. ETSI Network Functions Vir-
tualization (NFV) specifications ([6],[7]) formalize the decomposition of orchestration into NFVO, VNFM,
and VIM, enabling control over virtualized resources. In [143] is shown that intent-based orchestration can
enrich MANO with semantic statements, allowing optimized service placement and dynamic adaptation
under varying conditions. Furthermore, the integration of Application-Layer Traffic Optimization (ALTO)
([133],[122]), which provides abstract network map, cost map (related to performance information and
SLA-based metrics), path and endpoints information (such as location, bandwidth, capabilities, resource
availability), with NFV-MANO, can enable service orchestration decisions to be informed by real-time,
topology- and performance-aware metrics, supporting multi-domain orchestration and SLA compliance
[102].

CASTOR D2.1 Public Page 11 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Recently, lightweight forms of orchestration have gained significant attention due to their shorter deploy-
ment time and ease of portability and scalability. In [38], a survey on container orchestration is presented,
where among the identified gaps are container monitoring capabilities, tools, and autonomous features
in orchestration frameworks that enable self-healing and self-optimization. In the study by Salhab et
al. [127], an open-source Core Network (CN) was orchestrated using Docker Swarm as the manager.
Their approach involved deploying multiple nodes with a load balancer and a floating IP to establish a
highly available 5G core (5GC). However, this work primarily leveraged Docker’s existing capabilities to
demonstrate their applicability in the context of 5G. The orchestration lacked dynamism, and the security
measures implemented were rudimentary.

Surveys of distributed systems and container-orchestration platforms consistently highlight key chal-
lenges in observability, autonomous operations, and resilience [137], [86]. For example, [33] emphasize
the critical need for end-to-end runtime instrumentation to ensure reliability in microservice deployments.
Modern stacks, Kubernetes1, Prometheus2, and Istio3, help bridge these gaps. Kubernetes implements
declarative configuration and self-healing, enabling systems to detect and automatically recover from
failures. Prometheus provides a robust metrics-based monitoring ecosystem, while Istio’s service mesh
adds secure traffic control, identity-based policy enforcement, and zero-trust architecture principles to
the orchestration landscape. At the networking layer, container network interfaces (CNIs) like Calico4

and Cilium5 extend orchestration capabilities into Layer 3, supporting granular network policies. Cilium,
in particular, leverages extended Berkeley Packet Filter (eBPF) to embed network observability, traffic
shaping, and security policies directly into the Linux kernel.

Among recent contributions, Lombardo et al. [98] proposed extending Kubernetes networking with seg-
ment routing over IPv6 (SRv6), enabling native support for Traffic Engineering (TE) within the orches-
tration layer. Their work integrates SRv6 support into the Calico-VPP plugin, introducing a scalable,
feature-rich overlay for Kubernetes clusters deployed across distributed multi-datacenter environments.
The proposed solution allows dynamic creation and configuration of SRv6 tunnels and supports IPv4
and IPv6 workloads. Importantly, it achieves feature parity with traditional overlays, while enabling ad-
vanced capabilities such as multi-tenant VPNs and centralized traffic engineering via Segment Routing
(SR) policy injection—either through BGP or Kubernetes-native ConfigMaps. Nevertheless, cloud-based
VNF orchestration efforts remain fundamental, as they establish the foundation for NFV orchestration in
5G and B5G networks.

Next generation networks will strongly rely on a multi-stakeholder infrastructure. Seamless resource
sharing based on AI automation will enable service interconnection across diverse domains, in the so-
called Cloud-in-Continuum. Cooperation between stakeholders strengthens End-to-end (E2E) service
delivery by addressing competition and trust models in service provisioning. To this aim, future network
establishes well-known technological pillars to fulfill these needs. E2E network slicing, leveraging NFV
and SDN paradigms, logically groups and isolates resources and services, while NFV-MANO enables
the automation of the NFV life-cycle management. Lastly, DLT-based solutions enhance trustworthiness
in information-sharing processes and establish these as three key pillars. However, of the three afore-
mentioned, slicing management through orchestration often relies on human intervention for decision
making and responding to context evolution, which reduces its effectiveness. Current State-of-the-Art
(SotA) solutions typically address this challenge by introducing a unified orchestration abstraction, such
as intent-based interfaces or intermediary orchestrators. These tools translate high-level policies and
requirements into actionable commands across diverse domains [56, 59]. To mitigate the limitations of
manual interventions, an abstraction layer is proposed as a solution. As a consequence, ETSI defined
the Zero-touch network and Service Management (ZSM) standardization working group , oriented toward

1https://kubernetes.io/
2https://prometheus.io/
3https://istio.io/
4https://docs.tigera.io/calico/latest/about/
5https://cilium.io/

CASTOR D2.1 Public Page 12 of 234

https://kubernetes.io/
https://prometheus.io/
https://istio.io/
https://docs.tigera.io/calico/latest/about/
https://cilium.io/

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

providing autonomous governability of cross-domain service networks, taking humans out of the loop.
ZSM is driven by closed loops that coordinate logical steps. The closed loops defined in ZSM enable
interaction between system components via intents, aiming to deliver concrete tasks such as slice de-
ployment. ZSM divides the 5G architecture into different Security Management Domains (SMDs), such
as RAN, Edge, Transport, Cloud, or Core. Intra-domain management is addressed by the ZSM archi-
tecture , which defines functional modules that rationally split functionalities (e.g., orchestration, Policy
Management, Analytics). These modules and the domain’s infrastructure are connected by a closed loop,
driven by an intent. Furthermore, ZSM defines an E2E domain that ensures cross-domain integration.
A global perspective of the system allows the E2E domain to manage the lifecycle of E2E slices via
intents. They ensure consistent policy enforcement, resource alignment, and coherent lifecycle manage-
ment. Specifically, intent-based mechanisms enhance interoperability by abstracting technical differences
and providing a common semantic language. This approach enables cohesive cross-layer orchestration
while reducing the operational complexity often associated with manual or disparate orchestration sys-
tems. The SotA techniques leveraging closed-loop automation, driven by intent-based policies, facilitate
dynamic and autonomous orchestration that responds in real-time to evolving network conditions. Tech-
nologies frequently employed to implement the orchestration across different layers include:

• Intra-domain Orchestration: Flexible Algorithm (Flex-Algo), Open Shortest Path First (OSPF),
Intermediate System to Intermediate System (IS-IS), Routing Information Protocol (RIP), etc.

• Inter-domain Orchestration: Border Gateway Protocol Link-State (BGP-LS), BGP-LS Extensions
for Flexible Algorithm (RFC 9351), Control Exchange Points (CXP), etc.

The orchestration layer offers great potential to seamlessly manage diverse domains and, due to the wide
range of possibilities it provides, focusing on providing high availability for service function chains, where
multiple VNFs that perform the same function but with different roles (Master or Slaves) are instantiated on
distinct servers, generating multiple paths for delivering the same service. Recently, lightweight forms of
orchestration have gained significant attention due to their shorter deployment time and ease of portability
and scalability.

Many of aforementioned approaches address only specific or isolated aspects, often overlooking
the involvement of multiple actors in different domains involved in the holistic management of 5G
systems. In contrast, the CASTOR approach bridges these gaps by introducing autonomous, policy-
intent-based orchestration. This enables seamless enforcement of security measures and counter-
measures, both for standalone VNFs and for E2E network slices spanning the entire 5G ecosystem.
Further, there is currently no standardized architecture for integrating service orchestration with secu-
rity orchestration. While various proposals exist that highlight the benefits and limitations of different
approaches, a harmonized methodology at the orchestration layer, capable of managing and provid-
ing the necessary evidence to enable trust assessment, has yet to be established. Additionally, it
remains an open question how network-related exposure functions or services can be leveraged to
disseminate trust-related information effectively.

2.2.3 Routing Protocols and Source Routing in Segment Routing

Virtual Private Networks (VPNs) have emerged as a cost-effective solution to securely connect various
Systems-of-Systems among Service Providers in the Computer Continuum . VPNs can be implemented
at different layers of the OSI model, resulting in Layer 1 (L1), Layer 2 (L2), and Layer 3 (L3) VPN archi-
tectures, with each layer implemented using its own set of protocols [69]. Multiprotocol Label Switching
(MPLS) has enabled Service Providers to offer a broad selection of QoS-enabled VPN services [46].
Traditionally, Layer 3 and Layer 2 VPNs were built using Border Gateway Protocol (BGP) and Label Dis-
tribution Protocol (LDP) respectively. IS-IS or OSPF served as the Interior Gateway Protocols (IGPs)

CASTOR D2.1 Public Page 13 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

to ensure fast next-hop convergence and LDP, BGP or Resource Reservation Protocol for Traffic Engi-
neering (RSVP-TE) for transport label distribution. The number of different protocols and the emergence
of Software-Defined Networking (SDN) has led to the development of Segment Routing (SR) defined in
RFC 8402 [65].

Segment Routing (SR) introduces a source-routed forwarding paradigm in which the ingress router en-
codes the end-to-end path as a label or segment stack and is available in two main data-plane instantia-
tions: SR-MPLS and SRv6. IGPs have been extended to carry segment (label) information in Link State
Advertisements (LSA), eliminating the need for separate protocols such as LDP and RSVP-TE for label
distribution. In a single-domain, the ingress router can compute the full segment/label stack to encapsu-
late and transport VPN traffic by itself, since it has a complete view of the topology, while in multi-domain
or hierarchical networks, the ingress router may not have visibility of all destinations. In a nutshell, with
SRv6 route summarization and redistribution can be used to reach destinations, while with SR-MPLS an
external helper like an SDN controller or Path Computation Element (PCE) is needed to compute paths
and segment/label stacks. The SR PCE receives topology state from IS-IS, OSPF, or BGP Link State
Address Family. The Segment Routing Policy Architecture documented in RFC 9256 [64] introduces
full Traffic Engineering capabilities to Segment Routing (SR-TE). However, all aforementioned works do
not consider trust for routing. Recent research emphasises that the next major step in trust governance
involves shifting from node-level trust to path-level trust. Systems such as ICING [108] introduce cryp-
tographic path-verification mechanisms, where packets carry proofs that they have traversed approved
paths. FABRID [87] extends this with remote attestation in inter-domain routing, demonstrating that trust
evidence can be exposed and used for trustworthy path selection. Architectures such as SCION [45] and
ongoing work in the IETF NASR group further demonstrate the need for verifiable, attested forwarding
paths that allow clients to constrain their traffic to devices and domains they trust, while SCION [45] is the
first one that considers the notion of trust. Since, SCION is the only initiate that solves the same problem
as CASTOR, a comprehensive evaluation in terms offered functions will be done in the context of D5.1.

These approaches reveal that most routing infrastructures lack strong mechanisms for path-level trust,
reinforcing the necessity of trust governance and trust-plane mechanisms for enabling secure inter-
actions across heterogeneous and dynamic compute-continuum environments. CASTOR is com-
plementary to SCION, focusing on the path-level trust and on how to exchange trust-related data
between entities in intra- and inter-domain scenarios to facilitate the construction of a trust-plane.

2.2.4 Dynamic Trust Assessment and Governance

In the complex and heterogeneous compute continuum, comprising vast numbers of devices and diverse
data sources, the integration of trust-assessment mechanisms is crucial. In this context, trust assess-
ment mechanisms play a central role in not only establishing and quantifying the extent of trust existing
between entities, based on both their own opinions as well as the opinion of others without a central
authority, but further enabling the provision of trust evaluations even for devices that lack inherent trust-
worthiness. Achieving this demands a multifaceted approach that uses a wide range of properties and
criteria, with trust relationships grounded primarily in integrity-related attributes. As the compute contin-
uum ecosystem becomes increasingly interconnected, two key intricacy factors further underscore the
importance of dynamic trust assessment: the sheer volume of incoming data and the potential conflicts
and inconsistencies within this data. Together, these challenges highlight the critical role of adaptive
trust-assessment mechanisms in managing data flow and ensuring the reliability and safety of advanced
compute continuum ecosystems.

Understanding, classifying, measuring, and assessing trust have been fundamental research challenges
in trust management in the last twenty years. Trust assessment has a focal point in sociology, technology,
and computing, including e-commerce, access control, and security risk analysis. The authors in [88] pro-
pose a trust-assessment method for cloud ecosystems in which multiple Cloud Service Providers (CSPs)

CASTOR D2.1 Public Page 14 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

collaborate. In their approach, each CSP forms a subjective trust opinion of its peers based on Service
Level Agreements and established reputation, enabling it to select appropriate partners. Similarly, the
work in [68] presents a trust-assessment approach for vehicle platooning, where a host vehicle evaluates
the trustworthiness of its predecessor by comparing its sensor-derived position with the contents of re-
ceived V2X messages over time; the resulting trust opinion is then used to adjust the safety distance. In
a different vein, the authors in [44] apply epistemic logic to quantify trustworthiness in multi-agent sys-
tems, with an observer monitoring agent behaviour and updating trust opinions accordingly. Across all
these works, trust is evaluated between two directly communicating peers, meaning trust is assessed
only within the scope of a specific bilateral relationship. However, this is insufficient in the compute con-
tinuum, where trust must be inferred over complex trust networks composed of numerous interdependent
relationships.

Emerging scenarios and applications across various domains, including compute continuum systems, are
introducing new challenges for trust-assessment research. At the same time, modern systems are be-
coming increasingly interconnected and collaborative, forming complex Systems-of-Systems that enable
capabilities no system in isolation could achieve on its own. In response, new and more sophisticated
requirements for trust assessment must be considered to adequately capture the characteristics of such
complex and heterogeneous environments.

First, due to the interconnected and collaborative nature of these systems, trust can no longer be as-
sessed solely within a single trust relationship (i.e., between one trustor and one trustee). Instead, trust
must be evaluated across complex trust networks consisting of multiple interdependent trust relation-
ships. Here, a trust relationship refers to the construction of atomic propositions expressing whether
relevant trust properties (e.g., integrity, safety, resilience) hold for that specific interaction. Assessing
trust across networks enables entities to base trust decisions on input from multiple cooperating peers,
increasing confidence compared to assessments derived from only a single source.

Second, trust levels must be derived from incomplete and subjective information, often provided by en-
tities that may themselves be unreliable. Evidence may be unavailable in a direct trust relationship, or
such a relationship may not exist at all. Consequently, trust assessment must support transitive trust, ob-
tained through a single or a chain of referral relationships within a trust network. The works in [131] and
[82] similarly distinguish between direct, indirect, and transitive trust, noting the importance of transitivity
when direct trust is absent.

Third, compute-continuum systems are highly dynamic, with trust relationships forming and dissolving at
run time. Thus, trust models must allow trust relationships between entities to be created and removed
on-the-fly to reflect this dynamism. Several studies and white papers have highlighted the need for such
dynamic trust, integrating temporal aspects into trust assessment [131][63].

Fourth, the entire trust assessment process should be fast and robust to be used at run-time for real-time
and safety-critical applications.

Fifth, trust assessment must cover not only entities (nodes) but also the data they produce. This re-
quires support for both node-centric and data-centric trust relationships, enabling a more comprehensive
evaluation of trustworthiness.

Sixth, complex trust networks consist of heterogeneous nodes whose trustworthiness depends on multi-
ple, evolving sources of evidence. Trust assessment must therefore incorporate inputs from diverse trust
sources, which may change over time. Misbehaviour in this context typically involves the transmission
of incorrect data (e.g., incorrect position information), meaning the veracity of data plays a central role.
Based on detector outputs, a node’s trustworthiness may be increased or decreased accordingly.

Seventh, because compute-continuum systems are distributed and ubiquitous, and aligned with Zero-
Trust principles, centralised trust-assessment solutions are insufficient. Instead, decentralised and dis-
tributed approaches are required, inherently introducing subjectivity into trust assessment. Subjective
trust has been previously acknowledged in works such as [66] and [82]. Therefore, trust assessment

CASTOR D2.1 Public Page 15 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

must incorporate belief ownership, allowing subjective beliefs from multiple entities to be merged, pro-
ducing a more accurate reflection of the objective world than any single opinion could provide. This aligns
closely with the first requirement, where we emphasise the cooperative construction of trust across mul-
tiple entities.

There are various mathematical theories that have been proposed in the literature to ascertain infor-
mation in uncertain and unpredictable conditions that could be potentially used for trust assessment:
Probabilistic Logic, Fuzzy Logic, Bayesian Probability, Dempster-Shafer Theory and Subjective Logic
[54]. In essence, Subjective Logic uniquely provides the ability to integrate subjective beliefs from
multiple agents, fuse contradictory evidence, and apply trust transitivity, allowing trust to be evaluated
across entire trust networks rather than individual pairwise relationships.

2.2.5 Risk Assessment and Required Trust Level Calculation

In the computing continuum, spanning IoT devices, edge nodes, and cloud infrastructure, ensuring secure
and trustworthy communication is critical for dynamic, heterogeneous networks. The risk assessment and
the calculation of the required trust level (RTL) are critical to securing the computing continuum, where
dynamic and heterogeneous networks of IoT devices, edge nodes, and cloud systems demand robust
security mechanisms.

Risk assessment identifies, analyzes, and mitigates threats to data and infrastructure, while RTL calcu-
lation quantifies the minimum trust needed to meet application-specific security, privacy, and operational
requirements, often formalized in Security Service Level Agreements (SSLA). Existing risk assessment
approaches often lack adaptability to real-time, multi-domain environments, and trust calculation meth-
ods focus narrowly on integrity, overlooking resilience and privacy. Similarly, trust-level calculations often
focus narrowly on integrity, neglecting other properties such as resilience and availability.

In distributed systems, risk assessment, involves identifying threats, vulnerabilities, and their impacts,
but scalability challenges arise in large, dynamic networks like IoT and edge computing, where device
mobility and heterogeneous protocols increase complexity. Real-time risk assessment is limited by the
need for continuous monitoring across diverse domains. Trust-level calculation employs methods like
Bayesian networks and Subjective Logic to quantify trust based on evidence such as device behaviour
or security claims. Existing risk assessment methods lack real-time adaptability to the dynamic nature of
the computing continuum, where node mobility and cross-domain interactions require continuous threat
assessment. The integration of risk assessment with trust quantification for path selection is limited, as
most approaches do not address the varying SSLA trust requirements.

The definition of RTL threshold, along with a consistent approach to risk assessment, forms the founda-
tion of the overall assessment methodology. A key challenge lies in translating the semantics of identified
risks into an RTL expression that can be directly compared against the actual level of trust (ATL). This
gap, how to map risk-derived requirements into measurable trust levels, is well-recognized in other do-
mains, such as the automotive sector [11]. In the context of 5G networking, threat modelling is inherently
complex due to the presence of multiple layers, such as the routing, data, and link layers, each with its
own distinct threat landscape. Although definitions for these layer-specific threat models exist, they also
serve as a foundation for deriving RTL.

Performing trust assessments within this multi-layered and highly dynamic environment requires a
generalized methodology capable of consistently identifying RTL values and enabling meaningful
comparisons with ATL. Developing such a methodology remains challenging, as several obstacles
must be addressed, including the diversity of threat models, heterogeneity of network components,
and the evolving nature of 5G architecture and services.

CASTOR D2.1 Public Page 16 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

2.2.6 Establishing Trust in Network Devices with Secure Runtime Monitoring

CASTOR’s goal is to provide trusted path routing enforced by a set of trustworthy network devices (e.g.,
physical or virtual routers). Therefore, CASTOR aims at enabling the network domain orchestrator to
dynamically assess the trust levels of all network devices within the domain to define trusted paths,
adjusting them whenever a trust level has changed. In order to do so, CASTOR needs to establish trusted
components within each device which allow for secure runtime monitoring and attestation of the device
states, as a basis for the trust assessment. Furthermore, CASTOR’s trusted device components need to
securely share the local trust levels (and associated attestation evidence) with the network orchestrator
to enable a network-wide trust assessment and calculation of the trusted forwarding paths.

Establishing Trust in Network Devices. The IETF Trusted Path Routing (TPR) standard [27] pro-
poses to establish trust in network devices by incorporating Trusted Platform Module (TPM) crypto (co-
)processors into each device. That way, verifiers can leverage TPM-based remote attestation protocols
to verify the boot-time state of each router before including it in the network domain for trusted path rout-
ing. However, in contrast, CASTOR envisions to perform a dynamic trust assessment based on runtime
attestation evidence generated at each device.

Alcatraz [21] and TrustedGateway [129] establish trust in network routers by augmenting them with CPU-
based trusted execution environments (TEEs), such as Intel SGX or Arm TrustZone, in order to enable
secure traffic routing and forwarding. Alcatraz establishes end-to-end-encrypted (E2EE) tunnels between
the TEEs of each router for secure hop-to-hop traffic encryption, while TrustedGateway designs a trusted
network I/O path with secure routing, firewalling, and NIC interaction that is isolated from other services
running on the routers. However, neither of them performs secure runtime monitoring of the router’s
components to collect evidence for a dynamic trust assessment in the context of trusted path routing.
Furthermore, they do not consider a network orchestrator performing a network-wide trust assessment
and path calculations.

The TDISP protocol [2] of the PCI-SIG standard allows a TEE VM (TVM) to establish trust in PCIe devices
and include them in their TCB, enabling secure interaction. More precisely, TDISP binds TEE Device
Interfaces (TDIs) of an attested PCIe device (e.g., GPU, NIC, or SSD), e.g., representing virtual functions
(VFs) of the device, to a TVM and continously monitors the TDI’s configuration and state information to
guarantee secure operation. That way, TDISP enables secure interaction between the TVM and TDI and
can revoke the binding whenver the TDI enters and insecure state. In CASTOR, we want to bind network
devices to the trusted domain orchestrator and continuously monitor them in order to asses their trust
levels based on runtime evidence. However, TDISP is applicable only to PCIe devices and therefore
cannot be directly applied to remote devices interfacing via the network (e.g., routers).

CASTOR envisions to address the above challenges of establishing runtime trust into network de-
vices. CASTOR designs new TEE-based trust extensions, called trust network device extensions
(TNDE), that are securely instantiated in each network device taking part in the trusted path routing.
The TEE-based design roots the protection of the extensions in hardware and enables the secure
execution of a runtime monitoring and trust assessment framework locally on each network device—
strongly isolated from the remaining device components (e.g., router network OS). To form a trusted
network domain, CASTOR envisions to transfer and extend the concepts of TDISP beyond PCIe
devices towards network devices managed by a trusted orchestrator, in the context of trusted path
routing. The CASTOR device extensions expose so-called trust network device interfaces (TNDIs)
that represent CASTOR-enabled network devices (e.g., a physical or virtual router). The orchestrator
can remotely attest the device extensions as part of a secure enrolment process into the network
domain and use a new TNDI security protocol (TNDI-SP) to set up the dynamic runtime monitoring
and trust assessment of each network device. A detailed description of the CASTOR architecture will

CASTOR D2.1 Public Page 17 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

be provided in chapter 6.

Runtime Monitoring of Device Evidence. CASTOR needs to perform secure runtime monitoring of
each network device to collect evidence for the dynamic trust assessments. Many relevant tracing frame-
works for system monitoring have been proposed in the context of host-based intrusion detection and
malware analysis, including kernel-based, hypervisor-based, as well as hardware-assisted tracers. In ad-
dition, control flow attestation schemes (CFA) have proposed static or dynamic instrumentation of target
services for fine-grained control flow tracing at a basic block level in embedded systems.

Kernel-based approaches [90, 1, 3] typically introduce new kernel modules and/or build on pre-existing
kernel facilitates (e.g., Linux tracepoints or eBPF) to monitor process interactions and resources. Exam-
ples for monitored artifacts include system calls, I/O resources (sockets, files), and process memory re-
gions. The tracers’ direct integration into the kernel isolates them from user space attackers and provides
direct access to the kernel data structures. However, they are not protected against a kernel compromise
and must be tightly bundled with the vendor specific OS, which can be challenging in setups with devices
from multiple vendors, as in CASTOR.

Hypervisor-based introspection frameworks [67, 147, 130] allow for a memory-based inspection of virtual
machines (VMs) or a single virtualized host OS. VMI frameworks are strongly isolated from the target even
under a kernel compromise and enable the non-intrusive inspection of kernel and user data structures by
leveraging existing memory forensic techniques [96]. However, as VMI inspects the target from outside
(in contrast to kernel-based tracers), VMI-based tracers must bridge the semantic gap [79] to correctly
interpret the inspected memory and locate relevant data structures, as well as avoid performance and
security pitfalls, especially when targeting live systems.

Hardware-assisted designs are often based on CPU extensions or Direct Memory Access (DMA)-capable
peripherals [70, 113] which allow for high-performance tracing. These approaches are typically tailored
to a specific type of inspection data (e.g., DMA-accessible memory or execution traces) and—depending
on the tracer design—can face similar deployment and security challenges as presented above.

CFA schemes choose between different types of tracers to monitor the control flow of the target [14, 19].
Typically, they apply static or dynamic instrumentation of the target service or leverage CPU extensions
(cf. above) to trace the control flow at a basic block level (BBL). However, due to the performance impact
of BBL-level tracing and the associated deployment challenges of static instrumentation, CFA schemes
typically focus on a small number of user space applications and embedded systems without high perfor-
mance requirements.

To the best of our knowledge, no existing work has specifically looked into the challenges of per-
forming secure and efficient runtime tracing of network devices—especially, in the context of trusted
path routing. Therefore, CASTOR aims at providing a secure runtime tracing layer as part of the
device extensions. CASTOR will tailor the tracing to specific evidence relevant to dynamically monitor
and asses the trustworthiness of the network devices for the enforcement of trusted routing paths.
CASTOR plans to follow a secure multi-level tracing approach by exploring a TEE-isolated memory
inspection, as well as kernel or hardware-assisted tracing methods that can provide complementary
tracing data for a more fine-grained assessment on demand. Furthermore, CASTOR will address the
challenge of securely sharing the trust levels and evidence via the network with the global orchestra-
tor for a network-wide trust assessment. Therefore, CASTOR will build on concepts of TDISP and
extend them towards network devices managed by the domain orchestrator, as mentioned above. We
will describe CASTOR’s tracing framework as part of the architecture in chapter 6.

Runtime attestation and implicit verification. As already mentioned, continuous verification of device
and data trustworthiness is important to prevent unauthorized access and ensure reliable communication

CASTOR D2.1 Public Page 18 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

across domains. Composite attestation is a concept in digital identity and verification systems that allows
multiple attestations (verifiable claims or credentials) to be combined, reused, and built upon to create
new, complex attestations. Specifically, an attestation is a digitally signed statement about a subject
(person, organization, or thing) made by an issuer, while ”composability” means these attestations can
be (a) combined with other attestations to form more comprehensive credentials; (b) selectively disclosed
(revealing only certain parts); and (c) derived to create new attestations without requiring the original
issuer. From the aspect of cryptography, in composite attestation, (a) there are multiple provers and
multiple verifiers; (b) multiple proofs can be aggregated/combined one by one; and (c) any verifier can
verify part of the aggregated/combined proofs.

In parallel, an aggregatable signature can act as a credential for a user, which can be verified and offers
unforgeability. Most importantly, multiple aggregatable signatures associated with multiple users can
be combined as one signature, proving identities of all corresponding users. There are some possible
solutions. The first one is Boneh–Lynn–Shacham (BLS) signature [32], which is based on type III pairings
and has short signature size, efficient signing and verification. The second one is using a structure called
Merkle tree [106], each user’s credential (a normal signature) is considered as a leaf of the Merkle tree.
The Merkle tree is maintained by a trusted third party, which can aggregate multiple signatures. Any
verifier can do the verification by checking certain authentication path in the Merkle tree.

CASTOR’s runtime attestation will be based on aggregatable signatures to achieve composite at-
testations. Also, considering we are in a transition from traditional cryptography to post-quantum
ones, we plan to adopt a post-quantum signature algorithm with post-quantum zero-knowledge proof
techniques, which allows continuous proof/verification (recursive proof) in zero-knowledge.

State machine and evidence verification. State-machine formalisms (finite-state machines—FSMs,
labelled transition systems—LTS/IOLTS, communicating FSMs—CFSMs) remain the canonical abstrac-
tion for modelling network protocols and distributed communication services. Protocol roles (endpoints,
routers, controllers) are captured as communicating automata exchanging typed messages, while safe-
ty/liveness properties are expressed in temporal logics (LTL/CTL) and verified via model checking [119],
[47], [75], [34]. For time-critical behaviours (retransmission timers, heartbeat/keep-alive, exponen-
tial backoff), timed automata extend FSMs with clocks and guards, enabling exhaustive analysis with
tools such as UPPAAL [18], [25]. In practice, engineers combine IOLTS/ioco conformance theory for
specification-based testing, PROMELA/SPIN for asynchronous message-passing verification, and, where
appropriate, SDL/MSC or LOTOS-style notations for protocol structure and interactions, to systemati-
cally explore race conditions, deadlocks, livelocks, and timeout pathologies under adversarial schedulers
[47, 75] [136].

At the same time, complementing white-box modelling, FSM learning could provide black-box models of
protocol implementations that are otherwise opaque (closed-source stacks, firmware). Active automata
learning—rooted in Angluin’s L*—interacts with a system under learning via membership/equivalence
queries to infer minimal DFA/Mealy models, with counterexample-guided refinement; open-source frame-
works such as LearnLib operationalise these algorithms for I/O-rich systems via abstraction/caching/map-
pers to manage real data domains and nondeterminism [20], [112], [78]. In parallel, passive approaches
learn Moore (or Mealy) machines from input–output traces without oracle queries, yielding artefacts well-
suited for conformance testing and downstream verification of protocol I/O behaviour [72]. Pairing learned
models with ioco-style testing, model checking and runtime validation has exposed undocumented states
and state-dependent vulnerabilities in production protocol stacks (e.g., TLS), demonstrating the practical
security value of the learn-then-analyse pipeline [72], [53].

Recent work tightens the loop between learning and verification evidence through learn→verify→refine
workflows: a learned model is checked for temporal properties (e.g., trust atomic propositions). Emerging
directions include probabilistic/stateful learning (towards MDPs or stochastic I/O automata for congestion

CASTOR D2.1 Public Page 19 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

control and wireless MACs), timed learning (recovering clock constraints to reason about timeouts and
jitter), and hybrid approaches fusing active learning with fuzzing or symbolic execution to accelerate cov-
erage of hard-to-reach protocol states. In safety-critical networking contexts, these techniques enable
evidence-driven assurance cases over both (a) hand-crafted specifications and (b) learned surrogates
of flight-critical communication stacks, with conformance and regression suites guarding against regres-
sions introduced by performance optimisations or hardware offloads [47], [18], [78], [72].

Moore machines will be employed in CASTOR, with a focus on abstracting the behavior of communi-
cation nodes at the local level, and the global as part of CASTOR orchestration engine.

2.2.7 Support for Global but Heterogeneous Trust

CASTOR’s goal is to establish trusted path routing in a trustworthy network, in which there are a set of
devices, e.g., physical or virtual routers. To achieve trusted path routing, in one domain, every router
needs to generate a proof of their evidence (trust level) to next router in sequence. An orchestrator
(server) in one domain needs to collect all routers’ proof to generate one proof on behalf of all routers. In
this process, CASTOR needs to ensure all aggregated routers are valid or can find some rouge routers.
Therefore revocation or linkability is necessary. Based on this kind of requirement, a composite attestation
scheme is required. For the cross-domain setting, during achieving the composite attestation scheme
with revocation, CASTOR also needs to compare different trust levels and give the lowest one without
revealing the real values of trust levels. A crypto primitive, called Order-revealing encryption (ORE) can
achieve orders of plaintexts by comparing corresponding ciphertexts without revealing the real values of
plaintexts. There are numerous solutions to achieve composite attestation and order-revealing encryption
schemes.

2.2.7.1 Public Key Infrastructures (PKIs) and Beyond

The correctness and reliability of attestation evidence is a fundamental step and a key enabler for the
envisioned trusted path routing and traffic engineering applications, as it ensures a certain level of security
and trust through authenticity among the network elements.

Traditional Public Key Infrastructure (PKI) serves as the foundational layer of trust for the entire CASTOR
project by establishing a secure and verifiable link between public keys and the real-world identities of all
entities involved, including physical or virtual routers and domain orchestrators. This is achieved through
the issuance of digital certificates by a trusted Certificate Authority (CA), which cryptographically binds
each device’s identity to its public key. The use of digital certificates is used in order to authenticate
routers and preventing form attacks. Standardized architectures, such as those outlined by the IETF’s
Remote Attestation Procedures (RATS), further build upon this concept by mandating PKI-signed plat-
form certificates. These certificates not only authenticate a device’s identity but also anchor it to a trusted
computing base, creating a robust framework for initial device registration and verification. This mecha-
nism of trusted identity bootstrapping is a critical prerequisite for all subsequent secure operations within
the CASTOR ecosystem.

In the PKI approach, a set of certification authorities (CAs) provide credentials to the network elements.
In the general case, there is a set of different authorities with distinct roles:

• Root Certificate Authority (RCA): Serves as the trust anchor of the PKI and is responsible for
issuing certificates to subordinate CAs. Its own certificate is self-signed.

• Enrolment Certification Authority (ECA): Handles the registration of network elements and is-
sues long-term enrolment certificates. Entities holding such certificates may then request additional
certificates from other CAs, such as pseudonym certificates from the PCA.

CASTOR D2.1 Public Page 20 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

• Pseudonym Certification Authority (PCA): Issues certificates that contain no identifying informa-
tion, thereby supporting privacy-preserving operations.

• Certificate Revocation CA (CRL-CA): Responsible for generating and distributing certificate revo-
cation lists for all types of certificates.

However, due to the sensitivity of attestation evidence, it raises the need to protect privacy as well. Current
approaches are based on PKI-based solutions with privacy friendly authentication services through the
use of short-term pseudonyms. However, such architectures are based on centralized infrastructure
entities for the support of services such as authenticated router registration, certificate revocation, etc.
Thus, traditional centralized PKI solutions are insufficient, as they fail to capture the decentralized Self-
Sovereign Identity concepts across all layers that are necessary to realize the vision of a network of
trust.

2.2.7.2 Layered and Composite Attestation

In order to have guarantees for trust on the routers and devices there is the concept of confidential
computing. Although numerous research efforts have explored remote attestation, an open challenge
remains in the assumptions we provide to the verifier (e.g., expected system state). Existing schemes are
based on the concept of a single prover and a single verifier. However, in the context of routing process
this needs to be elevated to multiple proves and multiple verifiers, either why the infrastructure element
has multiple internal building blocks (e.g., process, VNFs) or a path that is constitute of multiple routers.
For instance, in CASTOR, each device, whether a physical or virtual router, can generate evidence and
present it to the next node. The receiving node verifies the evidence, appends its own proof (which
incorporates the previous node’s proof), and forwards it further. This process can be repeated hop by
hop, ultimately establishing a trusted and authenticated path in which the order of devices is preserved.
Additionally, the system must be able to identify and isolate any rogue device. From a cryptographic
perspective, this scenario leads to several key requirements: (a) multiple provers must be supported; (b)
each prover must be able to combine several proofs; (c) combined proofs must implicitly encode and
allow verification of the sequence of provers; and (d) rogue nodes must be detectable, meaning effective
revocation mechanisms must be in place. Thus, is clearly understandable that there is a need to shift
from the concept of single attestation to the concept of layered and composite attestation.

Layered attestation focuses on capturing evidence from the different layers within a single device (e.g., the
internal layers of a virtual router), whereas composite attestation addresses scenarios involving multiple
provers and verifiers, such as several routers forming a network path. However, layered attestation does
not account for runtime behavior, and research on composite attestation is still at an early stage. To
elevate layered attestation into a full composite attestation model, additional dimensions, such as the
ordering and aggregation of evidence across entities, must be captured.

More specifically, when attestation involves multiple provers and requires aggregating proofs across them,
layered attestation offers a suitable approach. Layered attestation is a security paradigm that constructs a
composite, verifiable proof of integrity for a complex system by sequentially aggregating evidence from its
individual components or layers. Rather than producing isolated, independent reports, it creates a chain
of trust, where each layer—such as a bootloader, operating system, application, or in CASTOR’s case, a
network router—attests to its own state and then cryptographically incorporates the proof received from
the previous layer. This produces a single cumulative proof demonstrating not only that each component
is trustworthy on its own, but also that the components operate together in the correct sequence and
configuration. A final verifier receiving this layered proof can therefore validate the integrity of the entire
chain, from the root of trust to the final layer. This makes layered attestation well suited for verifying
multi-step processes such as secure boot sequences or, in CASTOR, establishing a trusted path across
multiple routers [125, 145, 91, 121, 99, 144, 148].

CASTOR D2.1 Public Page 21 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

In addition to layered attestation, ordered multi-signatures [30] provide another cryptographic primitive
that can achieve composite attestation. An ordered multi-signature scheme extends traditional multi-
signatures by enforcing a specific sequence on the signing process. In a standard multi-signature, a
group of signers collectively produces a single compact signature on a shared message, and the order in
which they sign is irrelevant. By contrast, an ordered multi-signature scheme cryptographically encodes
and verifies the exact sequence in which each signer contributed. The result is a single, constant-size
signature that proves two things simultaneously: (a) all required signers endorsed the message, and
(b) they did so in one—and only one—specific order. This property, known as signer order integrity, is
essential in scenarios where the sequence of actions or approvals reflects a workflow, logical process, or
physical path, such as a network routing procedure in which data traverses routers in a predetermined
order (defined path).

The technical mechanism to achieve this often involves sequential aggregation. The process begins with
the first signer in the sequence generating an initial signature. This signature is then passed to the second
signer, who does not merely create their own independent signature but instead performs an aggregation
operation that cryptographically combines the first signature with their own, creating a new aggregate
signature. This new aggregate is then passed to the third signer, and the process repeats. Critically,
each signer’s operation is dependent on the aggregate signature created by the immediate predecessor.
This chain of cryptographic dependencies makes it computationally infeasible to reorder the signers after
the fact or to generate a valid final signature without having followed the exact prescribed sequence.
After [30], there are some work focusing on ordered multi-signatures [134, 24]. [134] proposed a more
efficient ordered multi-signature scheme. However, the state-of-the-art scheme [24] is more efficient that
during verification no pairing operations. But in this scheme, an aggregated signature over different users
is signed on the same message, which is not suitable for CASTOR scenario. Moreover, these schemes
do not involve revocation function, i.e., finding a rogue user whose proof was aggregated in a signature.
The target for CASTOR is to design a more efficient layered attestation scheme or ordered multi-signature
with revocation. Then apply it to CASTOR.

Beyond the schemes used to generate verifiable evidence for trust assessment, the output of attestation
must also be shared in a privacy-preserving manner. During cross domain communication, each router
creates a piece of self-attested evidence, which will be used to compute the trustworthiness score either
1/0 (indicating trusted/untrusted) or a percentage (indicating a certain trusted level). The router encrypts
its level of trust, which could involve its identity, public key associated with a certificate, attestation evi-
dence, network position, and more. To join a network or to confirm its existence in the network but protect
its trusted level, the router sends the ciphertext to a domain orchestrator. In a domain, the domain or-
chestrator can access to all trust levels associated with all nodes in this domain. The orchestrator should
be able to compare different trust levels and give the lowest trust level. As discussed in the previous
section, traditional PKI cannot achieve this. Order revealing encryption (ORE) schemes, however, can
enable the exposure of attestation evidence and trust semantics in a privacy-preserving way, for example,
by revealing only a minimum trust level without disclosing any additional sensitive details.

ORE is an encryption scheme that shows the order of plaintexts via comparing the ciphertexts without
revealing information about plaintexts. ORE was introduced by Boneh et al. [31], aiming to improve order-
preserving encryption, which suffers from inference attacks. However, this scheme [31] is impractical
because it is based on multilinear maps. After that, Chenette et al. [43] proposed the first ORE based
one pseudorandom function (PRF), which is efficient and achieves a simulation-based security notion.
However, this scheme revealed the first differing bit, which is the most significant differing bit. This can
lead to security issues to the ORE scheme. Thereafter, there are some ORE schemes from PRF, aiming
to improve efficiency and security [93, 101, 117]. Further, there are some ORE schemes achieving some
features, such as delegation [95]. Nevertheless, how such mechanisms can be integrated as extensions
into existing network exposure services remains an open research question.

CASTOR D2.1 Public Page 22 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Overall, existing attestation flows assume a relatively stable model in which the Verifier initiates ev-
idence collection, evaluates it against a fixed set of reference values, and produces an Attestation
Result. This model presumes a single moment of assessment, uniform evidence semantics, and a
clear Verifier-Attester separation. Introducing runtime trust monitoring exposes a broader space of
design questions that challenge these assumptions, as already identified and highlighted by CAS-
TOR in IETF TPR discussions [76].
Heterogeneous and Weighted Evidence: One unresolved issue concerns the nature and diversity
of evidence during runtime. Devices may include multiple sources of evidence related to runtime
state, including integrity monitors, process isolation mechanisms, or configuration compliance check-
ers. These sources may differ in reliability, frequency or precision. Therefore it cannot be assumed
that all evidence is of equal weight. Some measurements may be conclusive, while others may be
advisory or context-dependent. So we need to extend current attestation frameworks to represent or
process such weighted, multi-source evidence over time.
Evidence Change and Notification Models: Dynamic trust monitoring also means that we need to
address how changes in evidence during runtime should be handled. Devices may transition between
trust-relevant states, and a model, where the Verifier initiates attestation on demand, offers no way to
detect or respond to such transitions in a timely manner. A way forward is to define a mechanism for
an Attester to track internal evidence changes, determine when a new trust assessment is needed
and notify a Verifier accordingly. This also raises architectural questions about how notifications are
structured and secured, and how Verifiers might subscribe to receive updates tied to evolving evi-
dence. In scenarios such as Trusted Path Routing, the Verifier might even reside at the orchestration
layer in order to receive notifications from multiple routers and dynamically recompute trusted for-
warding paths when device trust conditions change.
Source-Level Validation and Binding: We also need to define how a Verifier should validate the
origin and binding of individual evidence components when they are collected from multiple sources
within an Attester. Each evidence source may operate under different trust boundaries and may re-
quire individual validation with respect to its provenance, protection domain, and association with the
Attester’s identity. This creates a need for mechanisms that allow internal components to be explicitly
and securely bound to the attestation process. In practice, this implies cryptographic binding between
evidence sources and the attestation function, supported by key management and endorsement mod-
els that enable composability and structured verification.

2.2.8 Service Certification and Auditing through Blockchain Infrastructure

The convergence of Blockchain technology with the compute continuum constitutes a promising paradigm
for service certification and auditing. In the context of networking, Blockchains can support capturing and
managing violations in SLAs/SSLAs, acting as a bridge for information exchange, in a controlled manner,
between different administrative domains. However, Blockchains lack built-in capabilities to retrieve data
from or send data to external systems. This limitation is known as the Blockchain oracle problem, which
highlights the inability of smart contracts to verify the veracity of off-chain information [58]. A key challenge
in this domain is bridging the trust gap between the on-chain, decentralized ledger and the off-chain, real-
world data. This is where a Blockchains oracle plays a substantial role, acting as the trusted intermediary
to store authentic data into the Blockchain [115]. In the context of service certification and auditing,
the role of the Blockchain oracle is not only to transfer data, but to also guarantee its origin, timeliness
and immutability. The oracle’s role is to bring proof of service execution onto the Blockchain, while any
entity with the appropriate access rights can audit the service’s performance by examining the on-chain
records. The Blockchain acts as a single source of truth, where the history of all certified services is
permanently recorded. The principles of Blockchain oracle and auditing are particularly relevant to secure
path routing in the compute continuum. A relevant academic work by Ghodichor et al [71] demonstrates
how a blockchain-based approach can authenticate nodes and improve network security by creating an

CASTOR D2.1 Public Page 23 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

immutable ledger of routing information.

However, traditional centralized oracles are attractive targets for attackers. Decentralized oracles mit-
igate the single point of failure inherent in centralized oracles, yet they often suffer from performance
limitations [42]. In this regard, researchers are focusing on different mechanisms, to build decentralized
oracles, but there is still room for improvement in terms of trustworthiness, efficiency, and privacy [23].
Thus, trusted hardware technologies (e.g., Intel SGX or ARM TrustZone) are integrated with decentralized
oracle systems to form a more robust and secure “trusted oracle” protocol. Prominent examples are the
Phala Network [110] and the Fabric Private Chaincode [35]. Moreover, secure oracles are incentivized to
provide accurate data through a reputation system and staking mechanisms. For instance, oracles that
submit truthful data earn rewards and build reputation, while those that submit malicious or inaccurate
data lose staked collateral. Thus, it is ensured that the data an oracle feeds into the Blockchain is highly
resistant to manipulation, thereby establishing a foundation of trust for subsequent auditing processes.
However, what is still missing is the concept of a secure oracle layer to expose all the interfaces and
capabilities independently from the underlying technology to manage all the trust related information data
set.

The emergence of Blockchain technology has created new possibilities for secure and decentralized
service certification and auditing. However, as aforementioned, several challenges still need to be
addressed. Towards this direction, secure decentralized oracles, especially when combined with
trusted hardware, provide a promising pathway for service certification and auditing. On top of that,
CASTOR will offer a secure oracle layer exposing all the necessary interfaces and functionalities.
Such a layer is essential for managing the complete set of trust-related information in a consistent
and technology-agnostic manner.

2.2.9 Complex Multi-Constraint and Multi-Objective Optimization Process

The proliferation of edge computing and the Internet of Things (IoT) has led to the emergence of highly
distributed, dynamic, and heterogeneous networks. These networks consist of resource-constrained de-
vices that operate under stringent application-level requirements, including low latency, energy efficiency,
and secure, trustworthy communication. These devices often function in dynamic environments, where
they may be mobile or communicate without pre-existing infrastructure, thereby forming Mobile Ad Hoc
Networks (MANETs). They engage in communication using various radio technologies such as Bluetooth
(IEEE 802.15.1) and ZigBee (IEEE 802.15.4). Additionally, they may connect to the Internet via cellular
technologies (e.g., 4G/5G) or Wi-Fi (IEEE 802.11), collectively contributing to the paradigm known as
the IoT. IoT further exacerbates the challenges of network due to the massive scale of interconnected
devices and data. These networks are inherently multi-layered and span multiple Autonomous Systems
(ASs), comprising a wide range of devices that employ diverse technologies and operate under vary-
ing domain-specific policies. This complexity gives rise to both intra-domain and inter-domain routing
challenges. Existing technologies, such as LEACH [84], provides foundational mechanisms for establish-
ing topologies within an AS, including the selection of cluster heads (CHs) that act as representatives
and communication gateways to external networks on behalf of member nodes. Inter-domain routing
involves the integration of topology, routing, and policy information across multiple ASs. Modern network
architectures primarily rely on distributed best-effort protocols such as BGP [123], offering limited control
over end-to-end (E2E) traffic. However, traffic can also be routed based on Quality of Service (QoS)
requirements, supported by technologies such as Multi-Protocol Label Switching (MPLS) [124].

In the context of path establishment and TE process currently the focus is in single-objective optimisation
which is generally a network metric (e.g., latency). Integrating trust as a foundational component in IoT
networks necessitates the exploration and development of novel, trust-aware network architectures. Re-
garding multi-objective optimistaion, techniques like Multi-Objective Dijkstra have been adapted to com-
pute Pareto-optimal paths, while meta heuristic algorithms such as Ant Colony Optimization (ACO) and

CASTOR D2.1 Public Page 24 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Genetic Algorithms (GA) have been used for multicast routing and dynamic network scenarios [128] [118]
[73] [103]. More recently, Deep Reinforcement Learning (DRL) has been explored to optimize multiple
objectives simultaneously in deterministic networking environments [126] [146]. Despite these advances,
classical methods face critical limitations when applied to large-scale, dynamic networks. The scalability
issue is prominent, as the complexity of multi-objective routing grows exponentially with the number of
nodes and objectives, making problems like multi-objective routing optimization problems (MORP) NP-
hard [140]. On top of that, all these works are based mainly on heuristic algorithms, but such solutions
lack guaranteed optimality and often converge to suboptimal solutions [80][85][17], while ML-based
approaches require extensive training data and exhibit slow convergence, limiting their adaptability in real-
time scenarios [109]. These challenges underscore the need for advanced techniques, such as quantum
and quantum-inspired optimization, to efficiently handle multi-objective routing in next-generation net-
works [140].

In contrast to classical approaches, quantum computing offers new ways to tackle complex optimization
by leveraging quantum parallelism and tunnelling to address complex optimization problems. Quantum
algorithms have been applied to address MORP and multi-objective routing and spectrum assignment
(MO-RSA) in next-generation networks. Quantum Annealing (QA) has been applied to shortest-path
and optimal routing problems by mapping them to QUBO or Ising models suitable for D-Wave systems
[104][13]. Since many NP-hard combinatorial problems can be reformulated as Ising models [100], QA is
a natural fit and has recently been used for multi-objective quadratic optimization as well [16]. Gate-based
quantum computing approaches such as the Quantum Approximate Optimization Algorithm (QAOA) have
also shown promise. QAOA aggregates multiple routing objectives (e.g., cost and delay) into a single
QUBO formulation [116] and alternates cost and mixer Hamiltonians, with parameters optimized classi-
cally (e.g., via COBYLA) [36]. Case studies demonstrate that QAOA can compute Pareto-like solutions
for small dual-objective routing graphs [74]. Hybrid approaches combining Variational Quantum Eigen-
solve (VQE) and QA have also been proposed for trust-aware routing in IoT and metaverse contexts
[74]. Although current implementations remain constrained by Noisy intermediate-scale quantum (NISQ)
hardware [50], they demonstrate the feasibility of quantum methods for NP-hard multi-objective problems.
However, scaling to realistic network topologies remains an open challenge. As near-term quantum com-
puters remain limited, quantum-inspired algorithms—such as the Coherent Ising Machine (CIM) and the
Simulated Bifurcation (SB) algorithm—have emerged as practical alternatives. Both are designed to find
low-energy states of an Ising model efficiently, which corresponds to optimal or near-optimal solutions of
the combinatorial problem encoded (e.g. the routing optimization).

In summary, trusted path routing optimization extends the traditional shortest path problem by con-
sidering both communication network metrics and trust/security metrics. Classical multi-objective op-
timization techniques (like multi-criteria Dijkstra or evolutionary algorithms) have laid the groundwork
for handling multiple network objectives. Building on that, quantum computing approaches – notably
quantum annealing – offer a novel way to encode and solve the routing problem on quantum hard-
ware, potentially finding better solutions through quantum parallelism and tunneling. Furthermore,
quantum-inspired algorithms such as CIM and simulated bifurcation bridge enable practical large-
scale optimization, solving the same formulations efficiently on classical or specialized hardware.
Emerging literature suggests that combining these advanced techniques can significantly enhance
routing decisions – reducing latency and packet loss while ensuring paths traverse trusted nodes. As
research progresses, we expect to see “trust-aware” routing algorithms that leverage both quantum
computing and quantum-inspired optimizers to meet the dual goals of efficient communication and
secure, reliable data delivery.

CASTOR D2.1 Public Page 25 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 3

System Model and Assumptions

As aforementioned, the main vision of CASTOR is to achieve secure data transmission by engraining
trust throughout the traffic engineering process. In this context, the contributions of the CASTOR
framework span across the Compute Continuum - i.e., from network elements to the control plane - and
provide the mechanisms for robust and adaptive-to-changes trust characterization. In what follows, we
present the system model considered in the overall framework, highlighting the main entities in the path
control pipeline and the core added values brought forth by the innovations of CASTOR. This section
also outlines - highlighted in italic - the key assumptions that guide the first version of the architecture
design described in Chapter 6. Finally, Section 3.3 builds on top of the System Model and introduces a
first break down of the threat model that dictates the CASTOR trust assessment evaluations.

3.1 Conventions and Definitions

This section summarizes the core terminology adopted in CASTOR, building on the well-established
conventions defined in the various IETF drafts on Trusted Path Routing [27] and Control [51] and
Data Planes [52]. This short vocabulary is intended to lay the foundation on the core pillars/layers of
CASTOR’s architect (Chapter 6) and their associated functionalities towards the establishment of the
novel trust- and network-aware (inter-networking) routing architecture. Particular focus is been given on
those important specifications on the considered entities and endpoints that participate in the secure
path establishment and enforcement - considering also the characterization and quantification of trust in
complex environments such as the ones encountered in today’s Internet architecture. This vocabulary
will act as the reference resource for all following chapters and will be enhanced throughout the project
lifecycle (and in all subsequent technical deliverables) coalescing the concrete definition of each layer
(as part of CASTOR’s layered architecture depicted in Figure 2.1) as well as the specification of each
building block exposing the necessary multi-path control capabilities. This will allow all stakeholders have
a common understanding of the characteristics that could be used to describe the trustworthiness of a
data item or node as well as the methodology and concepts to be followed for allowing stakeholders
to make a judgment if a service, function or entity can meet the required expectations - based on the
trustworthiness requirements extracted by a service intent.

Autonomous System A collection of networks and router elements under common administrative
control.

Control Plane The mechanisms that are responsible for the discovery, propagation and overall life-
cycle management of routing paths. Any optimization tasks or communication overhead in the con-
text of the overarching CASTOR Trust Assessment Framework should be done in a non-disruptive
fashion, ensuring that the normal data plane traffic is not compromised.

CASTOR D2.1 Public Page 26 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Endpoint The source or destination of a path (as per [57]). Throughout the document the terms
ingress and egress elements are used to signal the two endpoints of the path as well.

Forwarding Path An end-to-end path between two endpoints over which data-plane traffic is for-
warded.

Path Profile A set of enforceable network and trust requirements that dictate the runtime charac-
teristics of a forwarding path.

Path Profile Catalogue A set of the available path profiles that can be supported by an admin-
istrative domain. This constitutes a uniform trust environment that characterizes the underlying
infrastructure layer - i.e., one or more ASes - that form the administrative domain.

Path Segment A list of segments that may span across multiple ASes or even administrative do-
mains. This is intrinsically linked to the CASTOR optimization problem discussed in Chapter 5. A
path segment can be translated into enforceable traffic engineering policies that form the forwarding
plane that satisfies a concrete path profile as per the agreed (Secure) Service-level Agreements.
Especially in the context of cross-domain service provisioning, a path segment culminates in the
realization of a trust union across diverse ASes that can exhibit the required trust level. We have
to highlight that this path segment is complementary to the foundational concept of ”Segment”
in Segment Routing protocol. The latter considers a segment as a composition of elements that
can execute instructions as part of a source-routed (Source Endpoint of a forwarding path) policy,
whereas in CASTOR Path Segment abstracts this concept between ASes.

Traffic Engineering Policy Engine The main control plane infrastructure component (of CASTOR)
offering control services for the path exploration process resulting to the enforcement of the optimal
traffic engineering policies so as to enable continuous maintenance of (S)SLA compliance. This
also extends to the enforcement of scalable trust- and network-aware routing updates, with high
path freshness, for the re-establishment of SLA compliance in case of a propert violation.

Attestation Result Augmented Evidence Control plane trustworthiness evidence that provide
cryptographically protected and verifiable evidence on the security posture of a routing element
(the domain-agnostic concepts of IETF Remote Attestation Procedures are specified in [28]) In
general, in CASTOR, trustworthiness evidence is essential for the overall lifecycle management of
an underlying AS, and the service assurance based on agreed service level agreements. In CAS-
TOR such evidence may be accumulated across a forwarding path, aiming to provide an efficient
mechanism for evaluating the trustworthiness of links, paths or entire domains.

We have to highlight that in the context of ASes belonging to the same administrative domain, we assume
that the network representation (capturing topology and temporal constraints) is maintained and kept up-
to-date by the Orchestration layer towards controlling resource deployment. This is done by advancing
MANO to understand and ac upon high level intents.). Declarative (northbound) network APIs are feeding
the Orchestrator Service descriptors and features supporting the increased automation and continuous
monitoring of the network state, respectively. This is an inherent feature needed for the optimal (inter-
domain) path control and establishment based on a set of domains with known relationships by the
Orchestrator. This information is then consumed by the Path Computation Element (PCE) as part of the
traffic engineering process [138]. on the hand, in the case of intra-domain path establishment, service
continuity is achieved through the employment of BGP-oriented routing protocols.

CASTOR D2.1 Public Page 27 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

3.2 CASTOR as a Trusted Routing Path Extension towards Secure,
Reliable Connectivity

Technology Strand #1: Trust- and network-aware TE process. Starting from the bottom left of the
figure, we consider an Autonomous System (AS) that is controlled by a network operator and provides
network connectivity in a single administrative domain. Regardless of the routing fabric (i.e., OSPF, IS-IS,
MPLS) within each AS, one key requirement that is put forth in recent advancements in the context of
serving sensitive workloads lies in the availability of security guarantees between the network elements
that participate in the fulfilment of a service (e.g., EVPN, MPLS L3VPN). As per the IETF Trusted Path
Routing (TPR) concepts, such guarantees would allow a network operator to ensure that workloads with
certain trust requirements can be diverted through network links that have certain security capabilities. To
this end, one primary added value of CASTOR (Added Value 1) relates to the provisioning of the in-router
Trust Network Device Extension (TNDE) (Section 6.2.8). Building on top of the concepts of IETF TPR,
the CASTOR TNDE is responsible for the secure monitoring (Section 6.2.9), collection and reporting of
runtime trustworthiness evidence in a verifiable manner, allowing any verifier (be it an adjacent router or
a controller entity) to attest to the network element’s operational assurance.

The merits of the CASTOR TNDE is agnostic to the underlying hardware/software characteristics of the
network elements provided that they posses certain root of trust (RoT) primitives (see Security Require-
ments in Section 9.1). For instance, a single router network element - if employed with the necessary RoT
capabilities (e.g., equipped with a Trusted Platform Module) it is able to expose the capabilities envisioned
in CASTOR. Even in the context of unmanaged networks, such TNDE capabilities could allow routers to
autonomously enforce adjacency trust with no central coordination at runtime as part of the IETF TPR
paradigm.
CASTOR Convention: Nevertheless, as we consider the advancement of complex and scalable net-
works that can cope with multiple traffic engineering requirements of mixed-criticality, CASTOR incor-
porates into its architectural designs the concepts of network functions - e.g., forwarding rules, routing
functionalities, route reflectors, path computation elements - being provisioned on top of virtualized in-
frastructure. This allows for flexible resource allocation and on-demand provisioning of the necessary
routing capabilities - e.g., even having multiple network elements treated as instances on top a common
underlying infrastructure element - according to Service-level agreement needs.

Technology Strand #2: Trustful Service Union Establishment. Having laid out the key considerations
for routing plane in Technology Strand #1, the rest of the CASTOR added contributions focus on the
provisioning of the TNDEs in each infrastructure element and the transformation of the collected trust-
related data into meaningful and actionable trust insights. First of all, one of the CASTOR added values
lies in the design and implementation of the relevant TNDE functionalities that - depending on the threat
model - can be enabled in order to ensure the secure collection of raw traces from the target in-router
environment. Specifically, through novel tracing capabilities and their transmission to the envisioned
Trust Sources, CASTOR aims to provide a complete pipeline for constructing trustworthiness evidence
that characterize the trust posture of the network element with respect to its configuration integrity, but
also its overall operational assurance.

Through the CASTOR-enabled secure and confidential channels, the aforementioned trustworthiness
evidence is fed to the CASTOR Trust Assessment Framework (Added Value 2). Existing works have
already made a preliminary attempt to tackle the concept of providing trusted paths in intra- and inter-
domain scenarios [45], [27]. Despite the initial advancements towards establishing pre-defined trusted
paths considering also a subset of the overall CC-wide threat model, they do not consider the emerging
challenges of ”Below Zero Trust” [139]. Specifically, considering the frequent fluctuations of the trust
state of network devices, CASTOR envisions to provide robust, adaptive-to-changes trust evaluations
that can reflect such changes in the calculated actual trust levels. Through continuous and dynamic
trust evaluations, CASTOR is able to perform trust evaluations both at local (i.e., in-router) and global

CASTOR D2.1 Public Page 28 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Open Standardized Resource APIs

Service Agreement
Assurance

TAF

Trust Insights

Autonomous
System 1

(AS1)

Orchestration
Layer

Domain OSS/BSS

Service Orchestrator

Closed-loop
Automation

Optimization
Trust-aware

Dynamic TE Policy
Provisioning

PCE

TE Policy
Engine

Trust-aware

Asset & Service
Management

Zero-touch
provisioning

Zero-touch
onboarding

PCEP

NETCONF

CASTOR Added Value in
Traffic Engineering landscape

TNDE

TNDE

Communication Interface with upper orchestration layers

Enhanced
TPR TNDE Autonomous

System 2
(AS1)

Service Orchestrator

TNDE

TNDE

TNDE

Domain OSS/BSS

Trust InsightsTrust Summary

Service Agreement
Assurance

9

Closed-loop
Automation

Optimization
Trust-aware

Dynamic TE Policy
Provisioning

PCE

TE Policy
Engine

Trust-aware

PCEP

NETCONF

Infrastructure Layer

Zero Trust Communication (ZTC) Fabric

Asset & Service
Management

OSS/BSS

1

5

2

3 4

7

8

Open Standardized Service APIs
Service Intent Decomposition

Translation Service
Service

Catalogue SLA Mgmt.Trust Requirements
to

Domain-specific Trust Policies

6

Domain
Operator

Service
Providers

Portal
Service Mgmt. Views Domain Registration Views

Trust Semantic Convergence

Declare domain services
and capabilities Domain

Infrastructure
Owner

Trust CapabilitiesNetwork capabilities

Figure 3.1: System Model and key CASTOR values in the Traffic Engineering landscape numbered from
1 to 9.

(i.e., controller) levels, allowing for the construction of rich trust insights that can guide service assurance
and/or traffic engineering strategies (Section 4.4).

In addition, with the enhancement of the overall insights at the orchestration layer, CASTOR is able to con-
struct a mirror of the topology graph at a controller layer for maintaining a fresh state of the network and
trust posture of the underlying infrastructure elements (Added Value 3). Towards achieving trust-aware
closed-loop automation, CASTOR leverages optimization techniques (Added Value 4; Section 6.2.7) to
provide recommendations that satisfy both network and trust related requirements (i.e., objectives and/or
constraints). These recommendations can then be converted into actionable and enforceable traffic en-
gineering policies in order to ensure the adherence of agreed service-level agreements throughout the
lifespan of a service.
CASTOR Convention: As an initial step toward incorporating trust requirements into traffic engineer-
ing pipelines, CASTOR adopts a tiered approach to express the network and trust requirements that a
domain can support. Using this approach, CASTOR maps SSLA clauses and objectives (defined by
upper orchestration layers) to domain-specific network and, crucially, trust requirements. Consequently,
this tier-based service catalogue forms the basis of the path profile catalogue, which clusters service
requirements according to a predefined set of policy templates specified by the domain operator.

CASTOR D2.1 Public Page 29 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Technology Strand #3: Agile Service and Transport Provisioning and Maintenance. All the afore-
mentioned enablers spanned across the compute continuum culminate in the embedding of trust in the
overall lifecycle management of traffic engineering policies. First, through the establishment of Trust Poli-
cies that define the minimum security requirements a network element must meet to participate in a path
with specific trust capabilities, CASTOR provides trust-enabled management of all assets and services
within an AS. From provisioning the necessary TNDE functionalities to securely onboarding new network
elements—or even entire managed domains—CASTOR enables trust-aware decision making (Added
Value 5) that determines when and how a network element or service should be reconfigured (Section
6.2.2).

The decision-making process within a managed domain is inherently determined by the requirements it
can support and the capabilities it provides. In the context of intent-based networking - as illustrated in
Section 2.2.1.3 - the derivation of the aforementioned requirements is the process of translating high-
level requirements specified by the Service Provider into Service Level Agreements, and ultimately into
domain-specific enforceable requirements and actions.
CASTOR Convention: The entire service negotiation process that starts from the expression of the
high-level service intents up until the realization of the established service-level agreement is orthogonal
to the CASTOR project. That being said, CASTOR’s contribution (Added Value 6) on this fold is twofold:
First, CASTOR envisions to extend existing, well-established, SLA schemas so as to incorporate trust
objectives into an extended encoding, forming the concept of Secure SLAs (SSLAs). At the same time,
CASTOR correlates SSLAs into concrete Trust Policies (Section 6.2.1) that can be enforced and validated
at the infrastructure layer. Through this mechanism, CASTOR aims to resolve the multi-path control co-
nundrum: translating the optimal path segments produced by the CASTOR optimization engine into en-
forceable control-plane instructions. This process highlights the flexibility of seamless traffic-engineering
provisioning using trust-aware control-plane functionalities (e.g., the Path Computation Element; Added
Value 7).

Finally, extending service provisioning beyond a single administrative domain (or AS) introduces addi-
tional challenges in ensuring end-to-end connectivity while meeting common network and trust require-
ments.
CASTOR Convention: For the purposes of multi-domain service establishment, we assume that reach-
ability and routing policy information between Autonomous Systems is already available through existing
mechanisms for prefix announcement and propagation. In this regard, CASTOR aims to expose the
necessary interfaces that allow the participating domains to exchange abstract trust information without
disclosing any sensitive - e.g., topological - information of each domain. Again, the contribution of CAS-
TOR in this context is twofold. First, CASTOR enables to provide the necessary mechanisms - namely
the Zero-Trust Communication Fabric - for sharing trust summaries between relevant stakeholders and
ensuring trust semantic convergence across different administrative domains (Added Value 8). Second,
CASTOR aims to leverage these common semantics across the domains in order to share trust sum-
maries that can provide (cryptographically) verifiable information about the trust capabilities of a domain
with the necessary level of abstraction (Added Value 9).

3.3 Threat Model

One of the CASTOR’s main objectives is to enable trust evaluation across the Compute Continuum. Even
starting from the transport network and the routing plane (as highlighted in Section 3.1), it is clear that
the security concerns may span across different levels in the CC. Identifying and documenting the most
prominent threats that may impact the CASTOR System Model is essential for advancing the collection of
relevant trustworthiness evidence by the CASTOR Trust Source enablers. This information is required to
enable the CASTOR Trust Assessment Framework to accurately evaluate the trustworthiness of a router
element, link, path, or segment throughout their lifecycle. In the context of CASTOR, our primary focus

CASTOR D2.1 Public Page 30 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

centres on ensuring the security and trustworthiness in the traffic engineering policy, allowing stakehold-
ers to express both network- and trust-requirements when provisioning their service workloads.

One key point before delving into the threat model refers to the fact that there are various factors that could
compromise the service level agreements of an established service. Apart from security implications,
network defects (either at a router/switch or link level) or resource limitations are several examples of
normal operation that may hinder the service fulfilment. Despite the fact that CASTOR Trust Sources
(e.g., attestation process or operational assurance evaluations through FSM) may catch such events
- which would lead to revised trust assessment they are not considered part of the envisioned threat
model.

CASTOR’s primary focus revolves around incidents that impact trust from a security standpoint (e.g.,
evaluating trust in terms of integrity, confidentiality, robustness). CASTOR’s threat model spans across
the Compute Continuum and takes into account the attacker capabilities as well as the potential cas-
cading attacks that may lead to more complex compromises with heavy impact. Adhering to zero-trust
principles, CASTOR’s threat model encompasses attack vectors stemming from both local and network
origins, including host-targeted denial-of-service attacks and routing-protocol compromises (e.g., BGP
session hijacking, active wiretapping of BGP sessions), as well as broader classes of threats beyond
these examples. As further illustrated in Deliverable D3.1, and considering the concept of virtualized
router elements as presented above, it becomes apparent the need to distinguish between host-based
threats and network-based threats. While the former may focus on attacks that may impact either the
router function or the underlying host virtualization environment, the latter one relates to attacks that orig-
inate from the forwarding and data plane. All these attack vectors calls for robust tracing and detection
mechanisms that need to catch such threats to the operational assurance of the network and result in a
proportional decrease in the overall trust of the affected node, link and path.

Zero-trust, new threat actors, and dynamic environments necessitates a robust threat model. This strong
adversarial model, encompassing security, privacy, and trust considerations, guides the requirements
defined in Chapter 9 of this deliverable. The methodology employed for establishing the requirements,
encompassing security, privacy, and trust considerations, is firmly grounded in the real-world security
requirements articulated by key stakeholders in the context of real production ready scenarios. For in-
stance, in the case of CASTOR use cases on smart automotive scenarios, the 5GAA and ETSI standards
(see Section 8.4) serve as a guideline for the CASTOR requirements and their KPIs. To that extent, the
consortium of CASTOR harnessed the expertise and input of relevant stakeholders, ensuring that the
needs and specifications are accommodated. Furthermore, as we move towards cross-domain service
provisioning, privacy considerations are also important to ensure that the participating administrative do-
mains are able to establish end-to-end paths with certain trust guarantees, without exposing any sensitive
topological information to the participating parties.

A detailed threat analysis as it pertains to specific threats and vulnerabilities which can be exploited to
launch attacks against core security properties like confidentiality, integrity, availability will be elaborated
in Deliverable D3.1. This threat analysis is also accompanied with a detailed mapping of the necessary
trustworthiness evidence that needs to be collected by the CASTOR-enabled Trust Sources and evalu-
ated buy the CASTOR Trust Assessment Framework so as to reflect the possible exploitation of a single
threat to the appropriate trust re-calculations that will lead to an accurate and timely trust decision.

CASTOR D2.1 Public Page 31 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 4

Extending Trusted Path Routing: Manifesting
Evidence-based Theory for Runtime/Explicit
Trust Assessment

The Trusted Path Routing (TPR) architecture ensures that only attested and trustworthy network de-
vices are included in routing decisions. In this model, each forwarding element is evaluated by a
Verifier prior to its inclusion in a trusted network domain. Evidence about the device’s integrity is as-
sessed to determine its eligibility for participation in the routing topology. While this enrolment-time
verification establishes a baseline of trust, it does not account for the fact that a device’s trust-
worthiness may change over time. If a device becomes misconfigured, compromised, or enters a
degraded trust state after initial enrolment, this change should be reflected in the trusted path routing de-
cisions. The TPR model [27], as currently defined, provides no mechanism to detect or respond to such
changes. Extending it with a runtime trust assessment phase raises several open issues that we need to
resolve. This constitutes one of the core challenges that CASTOR aims to address for the employment
of a Trust Assessment Framework capable of continuous (real-time) trust evaluation and quantification.
As elaborated in Chapter 2, we have witnessed advancements with respect to trust evaluations in both
cloud environments (e.g., evaluating the trustworthiness of Virtual Network Functions in central B5G/6G
deployments) and far-edge ecosystems (e.g., ensuring the trustworthiness of the data integrity used as
part of V2X cooperative communication). However, one of CASTOR’s key objectives is to bridge the two
ends of the Compute Continuum by introducing the concepts of continuous and dynamic trust evaluations
in the routing plane.

By adhering to zero-trust principles, CASTOR’s Trust Assessment Framework does not assume
any trustworthiness on the routing plane. Instead, it relies on observable and timely evidence from the
underlying network elements in order to evaluate their trustworthiness throughout their lifecycle. Routing
elements are admitted into a trusted network domain based on integrity evidence collected at enrolment
time. However, operational state may change after admission, potentially impacting the trustworthiness
of a device. Without a runtime model, the Verifier cannot detect such changes or update routing decisions
accordingly. This creates a need for mechanisms that enable continuous trust assessment and define
how Verifiers or orchestrators interact with routing elements beyond initial attestation.

In fact, this is aligned with the emerging concepts of the IETF Trusted Path Routing specification, where
router elements need to exchange trustworthiness evidence (e.g., that they have securely booted) prior
to the provisioning of any communication channels. These pieces of evidence may have different char-
acteristics depending on the property of interest under evaluation as well as the level of confidence (or
uncertainty) that is associated with them. This highlights CASTOR’s vision towards a continuous and
dynamic trust characterization which enables - in its simplest form - the establishment and continuous
maintenance of trust relationships in the routing plane while taking into consideration evidence coming

CASTOR D2.1 Public Page 32 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

from multiple, diverse, and potentially conflicting trust sources.

By examining these concepts from a different perspective, the incorporation of trust requirements in
the context of routing decisions introduces new challenges beyond the mere consideration of modern
network-based Service Level Agreements. Specifically, starting from the node-centric trust evaluations of
a single network element, CASTOR’s overarching Trust Assessment Framework envisions enabling trust
calculations that characterize communication links and eventually entire paths. In essence, this unlocks
the incorporation of trust-aware decision making into the establishment Traffic Engineering policies that
are able to satisfy enhanced Security Service Level Agreements (SSLAs) with both network- and trust-
related objectives.

The aforementioned CASTOR objectives on the Trust Assessment Framework introduce a wide variety
of challenges. First, this endeavour requires the establishment of precise and unambiguous definitions of
trustworthiness and trust, as well as the careful selection of the underlying trust assessment methodology.
A first specification of these concepts is documented in Deliverable D4.1 [40]. This chapter serves as an
introduction to the main challenges that CASTOR aims to address in the context of trust assessment. In
order to achieve this, it is essential to provide an initial sketch of the core principles and trust properties of
interest that are relevant in CASTOR (Section 4.1). This allows to to shed light on the current landscape
towards incorporating trust-aware decision making in the Traffic Engineering process (Section 4.2). In ad-
dition, Section 4.3 introduces the main characteristics that drive the decision behind the probabilistic logic
- i.e., methodology - that needs to be employed in CASTOR, constituting the backbone of the overarching
trust assessment framework (stemming, also, from the characteristics of the System Model presented in
Chapter 3). Building on top of this, Section 4.4 describes the high-level components that comprise the
Trust Assessment Framework, helping identify the key challenges applicable to each component. Even-
tually, to the culmination of the main challenges and research questions (Section 4.5) that will guide the
design, implementation, and evaluation of the CASTOR’s Trust Assessment Framework and its different
modalities spanning across the Compute Continuum.

4.1 Definition of Trust and Trustworthiness

4.1.1 Overall Principles

Before delving into the concepts of trust and trustworthiness, it is important to begin with the participat-
ing actors: the trustor and the trustee. In this scenario, a trustor is an entity with a certain requirement,
and an expectation that this requirement will be fulfilled by some other entity. The trustee, on the other
hand, is the entity that aims to fulfil the expectation of the trustor.

Let us consider an indicative example in the context of the Trusted Path Routing paradigm, where two
routers, say router A and router B aim to establish a secure connection between them. In this scenario,
router A - i.e., the trustor - may expect router B - i.e., the trustee - to forward packets in a secure manner
(i.e. an expectation of confidentiality) that have not been modified (i.e. an expectation of integrity) and
within a reasonable time-frame (i.e. an expectation of availability and low latency). We now further
explore the concepts of trust and trustworthiness.

• Trustworthiness can be defined as the likelihood of a trustee B to fulfil trustor A’s expectations in a
given context.

• Trust represents a decision (or disposition) by a trustor to place, or withhold, trust to a specific
trustee. If a trustor decides to trust a given trustee, the trustor believes that, with high confidence,
the trustee will fulfil the trustor’s expectations. Alternatively, given the knowledge that an entity, A,
trusts another entity, B, it can be said that ”A trusts B” is equivalent to the fact that ”A believes B to
have the property of trustworthiness”.

CASTOR D2.1 Public Page 33 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Note that in contrast to trust, which is a property of the trustor, trustworthiness characterizes the trustee.
Trustworthiness quantifies the trustee’s capacity to fulfil the trustor’s expectations. It is vital that a trustor
appropriately evaluates the level of trustworthiness of an entity such that it can be balanced with the
trustor’s expectations to ensure that trust is warranted.

Breaking down the concept of trustworthiness further, the degree to which a trustee can be considered
trustworthy is based on both their ability to meet the expectations of the trustor, as well as the extent to
which their capabilities are aligned with the trustor’s goal.

Trustworthiness itself is confined to a specific context. In other words, a trustee is only expected to fulfil
the goal of a trustor given a set of restrictions and/or circumstances. As an example, a router may be
expected to verify the contents of a packet but only with authorised access permissions.

The expectation of a trustor can relate to data, or to the behaviour of the trustee itself. For example,
there may be an expectation of data correctness (i.e. the data is accurate with respect to its intended
meaning and without errors, such as a sensor reading faithfully representing its measured quantity), but
there may also be an expectation relating to the functionality of the entity itself (for example, an entity may
be expected to securely and consistently transmit data every specified time-frame).

The collection of, and interpretation of evidence, provides the trustor with the ability to assess the like-
lihood with which a trustee is able to fulfil its request. This is known as trust verification, and directly
influences the decision making process. Evidence can exist in several forms, for example:

• Proof of the trustee’s past behaviour, ideally in the same (or a similar) context to that of the desired
task,

• Independent assessments made by other entities regarding the trustee’s ability to achieve the goal,

• Information on regulatory restraints that may allow or prohibit the trustee from achieving the goal.

Although evidence is objective, trust verification is subjective. In practice, this means that two inde-
pendent trustors may interpret the same evidence differently based on their own policies and ultimately
produce different trust verification results (even to the extent that one trustor does not view the evidence
as sufficient to grant trust, whereas the other is satisfied).

4.1.2 Trust Properties of Interest in CASTOR

In constructing this more contextually-aware representation of trust, these additional properties provide
critical context that directly inform how trust is formed in practice, influencing evidence interpretation and,
ultimately, the resulting trust decision. Table 4.1 defines the initial set of trust-related contextual properties
used in CASTOR’s trust modelling process.

Trust Properties in CASTOR
Property Description
Confidentiality An assurance that sensitive information is protected from unauthorised ac-

cess, solidifying the expectation of privacy in a given trust relationship. For
example, vendor-specific information relevant to evidence collection should
be encrypted to prevent unintended disclosure, and only shared on a need-
to-know basis.

CASTOR D2.1 Public Page 34 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Integrity A guarantee that data is not modified by unauthorised means during trans-
mission and storage, and that any given entity in the network is faithfully
reporting accurate, timely and legitimate evidence. For example, data (such
as an attestation report) sent from one router should arrive at its destina-
tion exactly as it was sent. In CASTOR, the Local TAF only assesses trust
within the context of integrity. However, additional properties of trust are
also assessed at the level of the Global TAF.

Availability An assurance that a network can maintain operational continuity to autho-
rised users, even in the event of disruptions and/or attacks. For example,
in the event that a link goes offline, degrades in performance or is compro-
mised in some way, CASTOR should be able to efficiently establish a new
path such that downtime is minimised/non-existent.

Robustness A guarantee of a system’s ability to adapt to and recover from disruptions
and/or attacks to ensure operational continuity. For example, effective mit-
igation strategies should be implemented to handle issues such as packet
loss or malicious attacks.

Table 4.1: Contextual properties of trust.

4.2 Elevating Trust metrics as a core enabler in Traffic Engineering
Provisioning

4.2.1 Current Considerations in Trusted Path Routing

The IETF’s approach to Trusted Path Routing (TPR) builds upon the foundational architecture defined in
the Remote Attestation Procedures (RATS) framework. At its core, RATS enables a relying party (e.g., a
verifier or orchestrator) to assess the trustworthiness of an attester (e.g., a router) by verifying evidence
about its internal state, typically rooted in hardware-level security anchors such as Trusted Platform Mod-
ules (TPMs) or Trusted Execution Environments (TEEs). This verification process is intended to ensure
that only devices with a verified, attested software and hardware configuration are permitted to participate
in critical network operations.

In the current IETF TPR model, trust decisions are tightly coupled to the device onboarding process.
Specifically, before a router is admitted into a trusted routing domain, it undergoes remote attestation.
This is a process based on evidence. A verifier receives cryptographically signed evidence from the
attester, such as measurements of firmware, kernel, or configuration. This is typically done during its
boot or initialization phase. If the attestation is deemed valid, the device is issued a form of endorsement,
such as a “trust passport,” authorizing it to participate in trusted path computations. These trust passports
may be periodically revalidated but are generally not tied to fine-grained, runtime monitoring.

This onboarding-centric trust assessment implies that a device is either trusted or not at the moment of
domain admission, and this trust status persists unless explicitly revoked. While this approach is well-
aligned with traditional, relatively static infrastructure deployments, it introduces a significant limitation
for dynamic or multi-tenant environments such as the computing continuum or zero-trust architectures.
In particular, it does not accommodate real-time fluctuations in trust posture due to software updates,
behavioural anomalies, lateral movement of threats, or emerging vulnerabilities.

To compensate for this static model, TPR also explores the possibility of incorporating trust policies into
routing protocols. For example, when a path is computed, devices may be excluded based on their
attested trust level or associated trust attributes. However, this is still fundamentally bound to the trust
state as observed during onboarding.

So we can summarize the RATS-Based approach in Trusted Path Routing as follows:

CASTOR D2.1 Public Page 35 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

• Binary Trust Posture: Devices are typically considered either trustworthy or untrustworthy based on
a point-in-time evaluation.

• Boot-Time Evidence Focus: The trustworthiness of a router is often inferred solely from its boot-time
measurements, omitting behavioral or operational metrics.

• Lack of Runtime Adaptivity: Dynamic changes in a router’s software, configuration, or runtime
behavior are not reflected in the active trust model unless explicit re-attestation is triggered.

4.2.2 Trust objectives in Service-Level Agreements

The Trust Assessment Function (TAF) architecture introduced in CASTOR decouples trust inference from
the forwarding plane by establishing a dual-layer assessment mechanism: a local TAF embedded in each
node, responsible for measuring device integrity and runtime state, and a global TAF, which synthesizes
network-wide observations into node and link-level trust metrics. The outcome is a set of dynamic trust
indicators for nodes and links that reflect the real-time trustworthiness of the network and evolve in re-
sponse to fresh evidence.

The dynamic nature of CASTOR’s trust architecture—where evidence is continuously collected, pro-
cessed, and evaluated by both local and global Trust Assessment Functions (TAFs)—demands that the
control plane no longer treats path computation as a static process driven by stable, low-frequency up-
dates. Instead, it must evolve to handle ephemeral, granular shifts in trust posture. This shift in archi-
tectural needs justifies a structural augmentation to the routing stack. Not only should routers advertise
connectivity and performance characteristics, but also current trust scores, endorsements, and verified
capabilities. Without these enhancements, routing logic will remain blind to the very attributes that define
whether a path is usable under evolving SSLAs.

Current path computation processes are not equipped to consume, reason over, or prioritize trust scores
as dynamic metrics. In CASTOR, a node deemed trustworthy at the time of initial path computation may
no longer meet SSLA constraints minutes later due to trust degradation, even if its interfaces and metrics
remain unchanged. To accommodate this, routing convergence must be extended beyond traditional
triggers: changes in trust must be treated on par with link failures or performance degradation. That
means we need to transition to trust-aware routing where a drop in ATL or RTL triggers revisions in
the Traffic Engineering policies (e.g., Updates to Flex-Algo topologies or enforcement of updated SR
policies), because the path is no longer admissible under trust-centric service guarantees. This redefines
path engineering to incorporate evidence-based, runtime trust semantics.

Routing mechanisms - such as Flex Algo Definitions - allow the construction of overlay (virtual) topologies
tailored to specific objectives. In an administrative domain, there can be multiple such overlay topologies,
each constrained by inclusion or exclusion of links based on administrative tags (admin groups), prefix
preferences, or metric types. This design is already used in scenarios where certain traffic classes must
avoid low-bandwidth links, minimize latency, or maintain disjointness from other flows. In CASTOR, such
mechanisms need to be enhanced to support per-profile trust topologies.

For example, in the context of Flex Algo, an instantiated Flex Algo topology could correspond to a
trust level defined in the Service Catalogue of a domain; e.g., Flex Algo ID 128 corresponds to a high-
assurance path profile, while Flex Algo ID 129 corresponds to a medium-assurance path profile. A Flex
Algo topology designed to only use “green” links representing trusted and attested infrastructure, effec-
tively slices the topology into a high-assurance virtual network, even if the physical underlay remains the
same. Candidate paths computed by the PCE or by ingress routers can then select among multiple SR
Policies, each aligned with a particular trust class. In CASTOR, the orchestrator may dynamically alter
the preferred candidate path as the trustworthiness of infrastructure changes over time.

CASTOR D2.1 Public Page 36 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

4.3 Subjective Logic as a Foundation for Evidence-Based Trust
Assessment

In CASTOR, the concept of trust is not binary. Instead, trust is treated as context-dependent and built
upon fragmented or incomplete evidence, which means there is always some uncertainty in the assess-
ment. To handle this uncertainty systematically, we adopt Subjective Logic as the foundational calculus
for reasoning over evidence and computing trust metrics such as the Actual Trust Level (ATL) and the
Required Trust Level (RTL). Subjective Logic is particularly suited to decentralized systems, where trust
decisions rely on both direct and referral evidence of varying credibility and scope.

Subjective Logic is a probabilistic logic framework designed to express beliefs in the presence of un-
certainty. Its core abstraction, the opinion, extends classical probability by attaching degrees of belief
(b), disbelief (d), and uncertainty (u) to a given proposition, along with an optional base rate (a). This
makes it ideal for trust systems where assertions about system integrity or policy compliance are rarely
black-and-white.

4.3.1 From Evidence to Opinions

Each Local TAF within CASTOR aggregates diverse sources of trust evidence: secure boot measure-
ments, attestation reports, violation events on the behavioural assurance, and potentially even neighbour
assessments. However, these sources differ in reliability, coverage, and semantics. Instead of merging
them through ad hoc scoring rules, CASTOR uses Subjective Logic to formalize this fusion.

Trust propositions such as “the router has booted correctly” or “the link is confidential” are evaluated into
opinions, e.g., ω = (b=0.7, d=0.1, u=0.2), which concisely encode both belief and remaining uncertainty.
This is essential: in order to take decisions, this uncertainty must be explicit and measurable.

In principle, the CASTOR Trust Assessment Framework requires the aggregation of diverse trustworthi-
ness evidence: e.g., secure boot measurements, guarantees on the runtime operational assurance of
a router and potentially even neighbouring assessments as part of the secure link establishment in the
context of Trusted Path Routing. These sources differ in reliability, coverage, and semantics. Rather
than fusing them using ad hoc scoring rules, CASTOR adopts a formal evidence-to-opinion methodology
grounded in Subjective Logic.

This methodology aligns with recent advances in dataset trustworthiness assessment, where trust propo-
sitions are explicitly defined (e.g.,“the dataset is not biased”) and evaluated using quantifiable evidence
mapped to belief, disbelief, and uncertainty components. In CASTOR, trust statements such as “the
router booted securely” or “the link is confidential” are similarly formulated as trust propositions, each
mapped to a Subjective Logic opinion ω = (b, d, u, a). This enables CASTOR to transform heteroge-
neous raw evidence into a normalized opinion space, making reasoning and aggregation tractable even
in conflicted, incomplete, or federated evidence scenarios.

Moreover, just as the dataset trust methodology incorporates different quantification models (e.g., constant-
uncertainty or evidence-weighted) based on context, CASTOR may select the appropriate opinion forma-
tion mechanism depending on the nature of the evidence (e.g., deterministic attestations vs. behavioural
heuristics). This preserves both semantic interpretability and uncertainty propagation, ensuring that
decision-making processes remain aware of evidence quality and gaps.

This principled transformation from evidence to opinion is pivotal to enable trust-aware actions across
CASTOR’s distributed architecture.

CASTOR D2.1 Public Page 37 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

4.3.2 Discounting and Indirect Evidence

In CASTOR, trust assessments are not limited to direct self-measurements (i.e., assessment made by an
isolated trust assessment process within the router). When the orchestration layer obtains both A’s trust
score and the trust scores A reports for its neighbours, it should apply a discount operator to A’s reported
opinions, with the discount determined by how much the orchestration layer trusts A. This ensures that
evidence from less reliable sources is appropriately weakened (typically by increasing the uncertainty
component), while strong referrals retain more influence. Thus, trust discounting allows transitive trust
to be computed robustly in a dynamic, distributed environment — mirroring the role of referrer credibility
in multi agent systems. This is captured formally through trust discounting, a fundamental operator in
Subjective Logic.

When a node A receives an opinion ωX
B from a node B regarding proposition X, and holds an opinion

ωB
A on B’s trustworthiness, a derived opinion ωX

A is computed using a trust discounting operator, such as:

ωX
A = ωB

A ⊗ ωX
B ,

where ⊗ denotes a discounting operator appropriate for the edge type and context.

In CASTOR this operator will be used by the global TAF to discount opinions coming from the local
TAFs. However, CASTOR also supports advanced configurations through the use of a recently intro-
duced Referral-Edge Path Discounting Operator [114]. This operator addresses the limitations of prior
models by enabling consistent discounting along chains composed entirely of referral (indirect) trust links,
a frequent scenario in dynamic and federated environments. Moreover, this operator can be used to cal-
culate trustworthiness of paths containing multiple referral edges within complex networks.

By integrating these operators, CASTOR is able to compute transitive trust robustly across arbitrary
network topologies and maintain meaningful uncertainty estimates. This approach mirrors the structure
of real-world multi-hop trust relationships, such as those found in vehicular systems, cooperative IoT, and
collaborative learning contexts.

4.3.3 Fusion of Multi-Source Evidence

Subjective Logic also supports trust fusion, enabling CASTOR to combine multiple opinions about the
same node or proposition into a single view. This is particularly important at the level of the Global TAF,
which collects trust reports from various Local TAFs (and potentially other telemetry sources) and must
resolve conflicting or partial views.

CASTOR leverages several fusion operators [83] from Subjective Logic, depending on the independence
assumptions and semantic nature of the evidence:

• Consensus Fusion is used when the opinions are assumed to be independent. It reinforces strong
agreement and penalizes conflicting beliefs. Given two independent opinions ω1 = (b1, d1, u1, a)
and ω2 = (b2, d2, u2, a) with the same base rate a, the fused opinion ωc = (bc, dc, uc, a) is given by:

K = u1 + u2 − u1u2, bc =
b1u2 + b2u1

K
, dc =

d1u2 + d2u1

K
, uc =

u1u2

K
.

This operator is useful for combining attestation opinions from distinct, independent Local TAFs [83].

• Averaging Fusion is suitable when the opinions may be dependent or correlated. It ensures pro-
portional influence of each source. For n opinions ωi = (bi, di, ui, a), the average fused opinion
is:

ba =
1

n

n∑
i=1

bi, da =
1

n

n∑
i=1

di, ua =
1

n

n∑
i=1

ui.

CASTOR D2.1 Public Page 38 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

This operator is applied in CASTOR when integrating behavior-based metrics that may reflect com-
mon environmental factors or correlated measurement noise.

• Cumulative Fusion is applied when opinions represent sequential or additive evidence—ideal for
time-series-based monitoring. For two opinions with belief masses r1, r2 and evidence strengths
n1, n2, the cumulative opinion is:

bcum =
r1n1 + r2n2

n1 + n2

, ucum =
K

n1 + n2

, with K being a prior weight (e.g., K = 2).

Disbelief is derived by dcum = 1 − bcum − ucum. This operator supports incremental trust tracking
over time.

As emphasized in [83], the choice of fusion operator has a critical impact: consensus fusion generally
reduces uncertainty with more sources; averaging fusion can smooth but also dilute strong opinions;
and cumulative fusion reflects evidence accumulation over time. CASTOR selects the appropriate fusion
model for each use case to ensure accurate, interpretable, and robust trust aggregation in dynamic
environments.

For example, in the context of trust calculations at the orchestration layer, fusion is applied to combine
opinions received from two in-router trust evaluations that characterize a common trust proposition such
as the link security or communication reliability of the shared link. It is also important to note that CAS-
TOR’s architecture allows for the definition of custom fusion operators, should the need arise to address
trust aggregation scenarios that are not adequately handled by existing Subjective Logic operators. For
instance, such extensions may be necessary for basic fusion schemes where the aggregated trust opin-
ion is defined as the minimum among individual opinions. In that case, this would require the introduction
of an ordering relation over subjective opinions.

4.4 CASTOR TAF high-level description

The CASTOR architecture redefines trust in the network not as a binary property evaluated at onboarding,
but as a continuous and quantifiable process. In this model, each network element is not evaluated as
simply “trusted” or “untrusted,” but along a scale that reflects the degree to which it can be trusted to
participate in critical routing decisions, based on runtime behaviour and metrics. Detailed presentation of
the CASTOR TAF blueprint is provided in Deliverable D4.1.

To achieve this, CASTOR adopts a federated trust model that distributes trust assessment responsibilities
across the network, introducing two core components: the Local Trust Assessment Function (Local TAF)
and the Global Trust Assessment Function (Global TAF).

• Local TAF agent: It is instantiated on each participating router or network function. Its role is twofold:
(1) to assess the trustworthiness of its own device (via local attestation and runtime monitoring),
and (2) to evaluate the behaviour and integrity of neighbouring devices through evidence exchange
and lightweight peer-to-peer validation protocols.

• Global TAF: It operates as a logically centralized trust orchestrator and it is responsible for building
and maintaining a dynamic trust topology of the network. It collects trust reports from Local TAF
agents, covering both self-assessments and neighbour evaluations. It combines these with addi-
tional evidence about the links (connections) of the network in order to have a complete picture of
the trustworthiness of nodes and links. This results in real-time trust scores of the whole topology
that guide secure path selection in compliance with SSLA requirements.

CASTOR D2.1 Public Page 39 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

4.4.1 The Architecture of the Trust Assessment Framework (TAF)

The Trust Assessment Framework (TAF) is a modular system architecture designed to enable evidence-
based evaluation of trust in dynamic, distributed environments. This section introduces the overall archi-
tecture of the TAF, setting the foundation for the subsequent discussion of its two main variants: the Local
TAF and the Global TAF.

The CASTOR TAF consists of five tightly integrated functional sub-components that enable trust to be
calculated based on runtime and static evidence.

4.4.1.1 Trust Model Manager (TMM)

The Trust Model Manager is responsible for instantiating and managing the internal representation of
trust relationships. These relationships are modelled as directed graphs of entities and propositions. An
entity might be a component of the system. The source of the graph is called the agent and the target
is always the proposition to assess. Each proposition represents a logical assertion about some system
property—for instance, that a software image is authentic, or that runtime behaviour has not exhibited
anomalies.

The TMM supports the composition of atomic and composite propositions. Atomic trust opinions repre-
sent the trustworthiness of a single proposition (i.e. variable X). This type of opinion deals with only one
specific aspect of trust, and the opinion about this proposition is formed based on direct evidence ob-
served by agent A. Ideally, an atomic proposition is a proposition that cannot be broken down to simpler
terms and evidence can either support it or contradict it.

For example, we might combine the following propositions:

• Proposition 1: ”VRouter has started”

• Proposition 2: ”vRouter is operational”

• Proposition 3: ”vRouter has been detected with vulnerability x”

• Proposition 4: ”vRouter forwards messages in less than 1µs”

Composite propositions express higher-level assertions that are evaluated as a function of several atomic
propositions using logical composition rules.

In practice, the TMM loads these models from policy-driven templates. This allows the system to adapt
its reasoning logic based on operational context or threat models. For example, in a high-assurance
environment, the model may include detailed runtime behaviour checks and multi-source redundancy,
whereas in a lightweight deployment, a simplified trust graph may suffice.

4.4.1.2 Trust Source Manager (TSM)

The Trust Source Manager serves as the integration layer between raw evidence generators and the trust
reasoning engine. It registers and coordinates the trust sources for a given trust model. Trust sources
include static measurement tools (e.g., secure boot logs), dynamic monitoring components (e.g., host
intrusion detection), remote attestation protocols, or behavioural telemetry systems.

The TSM abstracts the variability of these sources by transforming their outputs into structured, inter-
pretable trust claims. It validates the authenticity and freshness of the data, handles conflict resolution
among redundant sources, and converts inputs into normalized trust opinions.

CASTOR D2.1 Public Page 40 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Additionally, the TSM manages the life cycle of evidence collection: triggering periodic checks, subscrib-
ing to real-time feeds, and managing failure fallbacks when sources become unavailable or compromised.
It ensures that the trust graph remains populated with current and relevant evidence.

4.4.1.3 Trustworthiness Level Expression Engine (TLEE)

The Trustworthiness Level Expression Engine is the computational core of the TAF. It takes the normalized
trust opinions generated by the TSM and evaluates them within the trust graph defined by the TMM. This
involves recursively combining trust opinions across the graph structure to compute the trust value of
higher-level propositions.

The engine operates on Subjective Logic algebra, enabling it to manage, fuse, discount, and propagate
trust as a first-class property of trust. This is crucial in environments where partial or conflicting evidence
is common. For example, if two attestation reports partially disagree, or if one source is delayed, the
TLEE does not discard the result but incorporates it with appropriate weighting (i.e., depending on the
operator used it might increase uncertainty or put more weight to the most certain one.).

The TLEE outputs Actual Trust Levels (ATLs) for each target proposition defined in the policy. Each ATL
contains the computed trust of the proposition and the source traceability that led to the computed result.
This enables transparent audit and explanation of trust decisions.

4.4.1.4 Trust Decision Engine (TDE)

Once ATLs are computed, the Trust Decision Engine evaluates them against the Required Trust Levels
(RTLs). The comparison may end to a binary result (trust granted or denied) by means of a threshold or
an ordinal result (high, medium, low).

The TDE supports configurable policies for dealing with borderline or uncertain cases. For example, in
safety-critical systems, an ATL below threshold may trigger immediate mitigation, whereas in resilient
systems, it might prompt redundancy or escalation.

The TDE outputs actionable results: whether a proposition (which might be about a system or compo-
nent) is considered trustworthy or not. These results are consumed by the orchestrator layer for the
computation of the trusted path.

4.4.2 The Local TAF agent

The Local Trust Assessment Framework (Local TAF) agent is an instance of the generic TAF architecture
that operates at the level of a single node, i.e., a network device such as a router. Its primary purpose is to
continuously assess and reason about the local trustworthiness of the device on which it operates, using
both static properties (e.g., platform configuration) and dynamic evidence (e.g., behaviour at runtime).

The Local TAF agent runs within a Trusted Execution Environment (TEE) or otherwise isolated system
context.

CASTOR leverages the Local TAF agent to provide trust scores for devices that contribute to forwarding
paths. These scores are ultimately exported to the Global TAF and will influence routing decisions.

4.4.2.1 Trust Model and Propositions

The trust model instantiated in the Local TAF is centered on device integrity. It typically includes the
following atomic trust propositions:

CASTOR D2.1 Public Page 41 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

• TPBOOT : The device booted from a verified, cryptographically signed image.

• TPCONFIG: The platform configuration (e.g., kernel parameters, control-plane policies) matches a
trusted reference.

• TPRUNTIME : No runtime anomalies (e.g., memory access violations, unexpected privilege escala-
tions) have been detected.

• TPATTEST : The most recent attestation report is valid and fresh.

• TPFSM : No misbehaviour has been reported by the FSM source deployed in the network element.

These propositions may be composed into composite trust assertions, such as:

• TPINTEGRITY := TPBOOT ∧ TPCONFIG ∧ TPRUNTIME

• TPHEALTHY := TPINTEGRITY ∧ (TPATTEST ∨ TPFSM)

4.4.2.2 Trust Sources and Evidence

The Local TAF interacts with several trust sources, which act as evidence providers for evaluating the
above propositions:

• CASTOR Attestation Source: These provide support for measuring the platform state, generating
attestation reports, and validating those reports using expected reference values.

• FSM Source: This component reports on observed misbehaviour within the node. It can detect
and classify security-relevant anomalies such as protocol violations, forwarding inconsistencies, or
abnormal interface usage.

An open question is how to quantify and compare the trust value of evidence coming from FSM versus
attestation subsystems. In some threat models, the FSM may detect real-time violations that attestations
miss (e.g., mid-run privilege escalation). In others, attestation may provide stronger guarantees for static
properties.

One option is to treat the two as complementary trust sources, each associated with its own confidence
level. Another approach would be to define a trust fusion policy where, depending on the risk class of the
service, different weightings apply to FSM vs. attestation-derived opinions.

4.4.2.3 Dynamic Neighbors Assessment

A key innovation in CASTOR is that each Local TAF is not only responsible for assessing its own device
but also for forming trust assessments of its directly connected peers.

Each router periodically exchanges information with its immediate neighbours that may include:

• Current ATL of the neighbour, as claimed by its own Local TAF.

• Last attestation timestamp and freshness proof.

• Summarized FSM violation events or behavioural scores.

Upon receiving this evidence, the Local TAF evaluates the neighbour’s trustworthiness and constructs a
Neighbors Trust Vector, which will be reported to the Global TAF capturing the trustworthiness of itself
and its immediate neighbours.

CASTOR D2.1 Public Page 42 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

4.4.3 The Global TAF

The Global Trust Assessment Framework (Global TAF) is a service at the CASTOR Orchestration layer
that maintains a dynamic, end-to-end view of trust across the network. Unlike the Local TAF agent, which
evaluates the trustworthiness of individual nodes from a local perspective, the Global TAF composes
these local evaluations with telemetry and interconnection evidence to derive a holistic picture of trust at
the network-wide level. This capability is essential in the CASTOR architecture, where services must be
routed over paths that satisfy stringent, end-to-end SSLAs.

The primary responsibility of the Global TAF is to assess whether end-to-end paths satisfy a specified
Trust Profile. These profiles correspond to policies that define acceptable levels of trust for both:

• Nodes, evaluated via Actual Trust Levels (ATLs) produced by the Local TAF,

• Links, evaluated through telemetry, behavioural evidence, and cross-device reports collected at
runtime.

The Global TAF does not merely aggregate raw trust values: it composes trust evidence across topology
graphs to support constrained path selection and colouring. This requires carefully defined composition
semantics and efficient mapping into data structures such as Segment Routing (SR) Policies and Flex-
Algo topologies.

4.4.3.1 Trust Composition Across Paths

A central challenge for the Global TAF is trust composition: given a path composed of multiple nodes and
links, how can their individual ATLs be combined to assess the overall trust level of the path?

Different trust properties call for different composition rules:

• Minimum: Suitable for properties like integrity and confidentiality, where the weakest element dom-
inates the outcome.

• Average: Appropriate when trust reflects a statistical or experiential score (e.g., long-term re-
silience).

• Weighted Average: Used when certain nodes (e.g., ingress or egress) or links (e.g., across do-
mains) are more critical.

For this, one can also use existing fusion operators or create a new one. The choice of operator affects
both the evaluative semantics and the search space for the path computation engine. For instance, with
minimum composition, high-trust links followed by one low-trust hop disqualify the whole path. In contrast,
average-based profiles tolerate outliers under certain conditions.

Composition must account for the fact that link trust is not purely local. The trustworthiness of a link may
depend on the trust of both endpoints (e.g., if a TL node is involved, the link cannot be fully trusted),
shared evidence (e.g., consistency in attestation reports) and observed behaviour (e.g., abnormal packet
drops, latency spikes, or forwarding inconsistencies). This introduces the need for cross-node reasoning
and may blur the separation between link-centric and node-centric trust.

This creation of path-level trust is a crucial and significant open question within CASTOR’s Trust Assess-
ment Framework, necessitating the effective fusion of both node-level and link-level trust evaluations. Lo-
cal TAF agents at the node level only evaluate integrity, forwarding their derived ATLs to the Global TAF.
However, these ATLs must be discounted based on the Global TAF’s own trust in the local TAF agent’s
evaluative capabilities, often requiring additional evidence concerning the local TAF’s secure operation

CASTOR D2.1 Public Page 43 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

and functionalities. For link-level trust, the Global TAF may directly collect trustworthiness evidence, such
as information about bandwidth and/or availability. As highlighted above, a significant challenge lies in
defining the composition rules appropriately given the context and/or trust property being assessed, to
aggregate potentially diverse trust opinions into holistic, verifiable path-level trust values. The difficulty is
further amplified by the dynamic, multi-agent and complex nature of the overall network topology.

Furthermore, it is important to consider the extent to which information is shared from the local TAF to
the Global TAF in relation to the establishment of path-level trust. While Local TAF agents forward their
calculated ATLs (with respect to device integrity) to the Global TAF, it is unclear as to whether or not only
this information is sufficient, or if further raw trustworthiness evidence (such as that obtained from different
trust sources) must also be shared. Whilst the Global TAF must discount incoming ATLs based on its own
trust in the Local TAF agent’s capabilities, this inherently requires some form of verifiable information, in
the form of evidence, about the Local TAF agent’s trustworthiness within the current context.

4.4.3.2 Colouring and Integration with Routing

In the CASTOR architecture, trust information becomes operationally relevant only when it can influence
concrete routing decisions. The conceptual bridge between abstract trust evaluations and the actual
selection of forwarding paths is built through the mechanism of colouring. Colouring, in this context, refers
to the act of assigning symbolic labels—called ”colours”—to portions of the network topology that satisfy
the conditions of specific trust profiles. This transformation allows trust assessments to be encoded into
the language of routing, specifically into Segment Routing (SR) policies and Flexible Algorithm (Flex-Algo)
instances.

Each trust profile is mapped to a unique colour identifier. For example, a profile requiring high integrity
and confidentiality may be bound to colour 100, while a profile with more relaxed trust constraints might
be assigned colour 200. These colours serve as scoping primitives, allowing both control plane compo-
nents (e.g., the PCE or orchestrator) and data plane elements (e.g., routers implementing SR policies) to
selectively operate within trust-aligned subgraphs of the network.

This process begins with the Global TAF, which uses node-level ATLs (provided by Local TAFs) and
link-level trust evaluations (derived from telemetry and federated behaviour analysis) to determine which
elements of the network meet the requirements of a given profile. Importantly, this determination is not
static. As trust levels fluctuate due to ongoing monitoring and emerging evidence, the membership of
each coloured subgraph must be continuously reevaluated. A single drop in the trustworthiness of a
node may invalidate its participation in multiple trust profiles, and by extension, compromise the viability
of paths that depend on it.

However, colouring is not a simple binary operation. Trust assessments often involve nuanced conditions
that cannot be easily translated into yes-or-no labels. For instance, consider a link that satisfies con-
fidentiality requirements (e.g., it is encrypted), but connects to a node whose integrity is questionable.
Should this link be admitted into the high-trust subgraph? The answer depends on the underlying trust
composition logic: if the trust profile insists that all components, including both link and endpoints, meet
a uniform standard, then the link must be excluded. If, on the other hand, the profile tolerates partial trust
in some dimensions while enforcing strict guarantees on others, the decision becomes more complex.

Several open challenges arise in the colouring logic:

• If a node is classified as TL, should all its adjacent links be disqualified from the trust-colored
subgraph?

• Can a link be trusted if only one of its endpoints is high-trust?

• Should link ATLs be computed as functions of endpoint ATLs plus link evidence?

CASTOR D2.1 Public Page 44 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

• What happens when trust is asymmetric (e.g., node A trusts B, but not vice versa)?

These questions suggest that colouring must operate not on raw evidence, but on composed, policy-
aware interpretations of trust.

The trust composition logic directly shapes how the CASTOR Optimization Engine selects paths. If trust
is cumulative (e.g., using average), the Optimization Engine must track a trust budget as it explores
the graph. If trust is based on minimum, the Optimization Engine may prune all branches below the
threshold early. If weighting applies, trust annotations must carry metadata such as criticality weights.
The Optimization Engine must therefore operate not only on cost metrics (e.g., delay), but on multi-
dimensional annotations (trust, risk, availability) that are the output of the Global TAF.

4.4.3.3 Topology Evolution and Recolouring

In a typical network topology, trust is a dynamic concept. The trustworthiness of an entity in a network
does not remain static, and is continuously assessed and re-evaluated in real-time in response to the
collection of new and updated evidence. CASTOR’s dynamic approach moves away from more traditional
processes that treat trust as binary and only to be assessed at the moment of onboarding.

This means that a node deemed initially trustworthy may later fail to meet SSLA standards due to a
degradation of trust, for example due to poor quality evidence or a malicious attack. CASTOR improves
on these traditional processes, accommodating granular changes in trustworthiness such that optimal,
safe and relevant network paths can be updated and chosen in real-time. As a result, changes in network
trust must be handled swiftly and with high priority.

As discussed, colours are assigned to segments of the network to indicate adherence to the requirements
specified by trust profiles. However, as trust is dynamic, the process of recolouring must be incorporated.
If the trustworthiness of an entity drops based on the evaluation of new evidence, that entity’s membership
in certain trust profiles may no longer be valid, requiring the entity to be assigned to a different trust profile
(i.e. recoloured). This ensures that alternative paths can be selected in the event of trust degradation,
keeping the chosen path in alignment with the relevant SSLA.

4.5 Open Questions Relating to Trust Characterisation of Routers,
Links and Paths

Several complex architectural and computational challenges arise regarding the optimal implementation
of dynamic, distributed and accurate trust assessment in the CASTOR framework. Addressing these
issues requires specific trust modelling decisions forming the foundation for dynamic trust assessment. In
the following section, we detail the core open questions critical to defining the relationship and interaction
mechanisms between Local TAF agents and the Global TAF in order to characterise the trustworthiness
of routers, links and paths.

4.5.1 Information Sharing and Trust Models

A fundamental architectural question relates to the level of abstraction at which trust information should
be sent from the Local TAF to the Global TAF. Should a Local TAF agent be able to share its derived ATL,
effectively sharing a complete high-level trust opinion, or should it just transmit trust propositions and
related evidence? Calculating ATLs at the infrastructure level may introduce complexity and ambiguity;
after all, an ATL represents an ultimate evaluation of a complex composite trust proposition and may
therefore be better positioned at the orchestration layer, i.e. calculated by the Global TAF.

CASTOR D2.1 Public Page 45 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

A potential approach is to restrict the Local TAF to focusing on atomic trust proposition derivation and
evidence collection, sending its opinions to the Global TAF as configured by the network operator. This
approach enforces a clear separation of concerns, allowing the Global TAF to perform all logical aggre-
gation and composition steps based on what is received from the Local TAF agent, in order to derive
composite trust propositions specific to the required path profiles as well as ultimately determine the ATL
of an arbitrary trust proposition.

In addition, the IETF Trusted Path Routing draft proposes the exchange of stamped passports (attesta-
tion reports) between routers at the link-level. Should the Local TAFs involved in a link consume these
stamped passports during the overall evaluation of link-level trust? The concepts of links and paths, as
well as how they can be composed, are discussed in more detail in Section 4.5.4.

Furthermore, should the ATL of the link be an aggregation of both local trust and remote-next-hop trust?
In doing so, the boundary between the Local TAF agent and Global TAF would be blurred, and could
allow the Local TAF to have more of a view on adjacency-level trust relationships.

Other relevant open questions revolve around that of managing trust model variability. Should the trust
model change across different types of device? Also, given that CASTOR typically operators within
a multi-vendor environment, how can consistency be maintained across TAF instances? Further still,
can trust models adapt and be updated dynamically (for example in response to new threat vectors or
degradation of link and/or path-level trust), or are they fixed once deployed?

During the onboarding phase, devices must also establish initial trust anchors. Should such anchors be
pre-provisioned (for example reference states provided by router vendors), retrieved dynamically from the
orchestrator, or verified via out-of-band channels (such as a signed manifest exchange)?

As previously discussed, trust propositions are at the foundation of trust models within CASTOR, and
directly influence the resulting ATL calculation in relation to a given trust property. It is therefore crucial to
be able to determine the optimal set of evidence based on which a trust proposition can be constructed
for a given property. Optimising evidence collection and interpretation will directly influence the accu-
racy of trust evaluation at the orchestration layer, helping to increase confidence in output ATLs, with
the additional benefit of reducing the overhead on both the Trust Model Manager (TMM) (optimal trust
models require less computational overhead and space) and the Trustworthiness Level Expression En-
gine (TLEE) (fewer and more space-efficient trust models will lessen overall computational overhead and
result in faster and more reliable ATL computation).

4.5.2 Managing Computational Dependencies and Discounting

Subjective Logic (SL), a core component of the CASTOR trust assessment framework, performs opti-
mally in directed, acyclic trust models. Introducing computational dependencies between trust opinions
complicates the application of SL, and in particular, the process of discounting, discussed in more detail
in Section 4.3.2. The Global TAF must perform a discounting step of opinions received from the Local TAF
based on its own perceived trustworthiness of the relevant Local TAF agent. This opinion encapsulates
the Local TAF agent’s ability to accurately provide trust evaluations specific to the trust property currently
being assessed, for example integrity.

The careful selection of discounting operator is vital in the calculation of an accurate ATL, and difficul-
ties arise given the inherent complexity of managing interconnected dependencies and chains of trust.
Opinions are often distributed across referral paths where credibility of a report depends on the trustwor-
thiness of another entity, necessitating a discounting process that is consistent and fit for purpose across
sequential operations, such that transitive trust can be accurately encapsulated. Combined with the fact
that the Global TAF must also perform a discounting step on opinions received from Local TAF agents, a
context-specific discounting operator must be chosen to maximise the accuracy of trust assessment. As
previously highlighted, an example of such a discounting operator that CASTOR supports is the Referral-

CASTOR D2.1 Public Page 46 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Edge Path Discounting operator, allowing for meaningful discounting in scenarios where chains of trust
are purely indirect.

Another related open question is whether or not the Global TAF’s opinion on a Local TAF agent should in-
corporate details about the freshness of the evidence collected by the Local TAF (for example by verifying
that affinity bit updates were reported recently) in order to improve the discounting process.

In addition, coupling the discounting mechanism directly with the specific evidence being reported in-
troduces various computational dependencies which should ideally be avoided. It may be optimal to
separate these functions entirely, allowing for a separate mechanism to generate a generalised trust as-
sessment of the source, that the Global TAF can subsequently use as part of its discounting process.
This would ultimately simplify the core SL calculation steps.

4.5.3 Modelling Uncertainty

Uncertainty is an inherent component of trust modelling, exacerbated by the heterogenous and dynamic
nature of the network environments in which the CASTOR trust assessment framework operates. Per-
haps most notably, the evaluation of trust must be performed even in cases where evidence is lacking,
disjointed or incomplete. This inherent epistemic uncertainty introduces complexity in the trust modelling
process. How can an accurate and meaningful trust evaluation, and its subsequent trust decision, be
performed in the absence of a full set of evidence? CASTOR employs Subjective Logic (SL) as the foun-
dational calculus for reasoning about trust-related information and computing trust metrics, allowing for
the management of uncertainty.

The opinion (i.e. the primary abstraction in SL), extends classical probability through additional quan-
tifiable parameters, namely belief, disbelief and uncertainty (in addition to an optional base rate). Trust
propositions are evaluated into these forms of opinions, ensuring any uncertainty is quantifiable and ex-
plicit, before any kind of trust decision is made. This allows CASTOR to formalise trust despite incomplete
or contradictory evidence. Various weights can be used depending on the context (e.g. the sparsity of
evidence) to fine-tune this process.

An additional layer of uncertainty stems from the quantification and aggregation algorithms used within
CASTOR. By using an evidence-to-opinion methodology, the TAF can select the most appropriate quan-
tification model based on evidence type, for example differentiating between deterministic attestations
and behavioural heuristics, introducing the implicit management of evidence quality. An appropriate fu-
sion operator can also be selected in the event that the TAF receives multiple opinions on the same
proposition, discussed Section 4.5.5.

Furthermore, evidence collected by a TAF can also differ in quality and format. As discussed in the
previous section, CASTOR can mitigate the potential impact of a vast array of evidence through the
use of discounting. If the reporting source is not perceived to be trustworthy, discounting allows for the
weakening of the trust opinion, typically by increasing its uncertainty.

4.5.4 Challenges in the composition of trust propositions to achieve link and
path-level trust

Before links and paths can be considered, CASTOR must first be able to aggregate atomic propositions
into composite trust propositions that are capable of encapsulating more abstract concepts of trust (such
as “High Integrity”). The derivation of composite trust propositions requires the logical combination of
atomic trust propositions using logical operators. For example, a device having “High Integrity” may be
defined as “Secure boot for Router 1 stands AND Router 1 runtime integrity checks have passed”.

CASTOR D2.1 Public Page 47 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

However, an open question is the choice of which set of logical operators to use in such a scenario (for
example AND and/or OR). It may be the case that the chosen operators are entirely dependent on the
context of a specific trust assessment calculation and SSLA, and therefore cannot be assumed as a
constant. Aside from which logical operators to use, it is also important to consider the optimal set of
trust propositions themselves to be aggregated into a composite trust proposition that fully encapsulates
the target trust property.

After atomic trust propositions are received by the Global TAF and combined appropriately into composite
trust propositions, the Global TAF must construct opinions relating to links and to entire paths in order
to check SSLA compliance. The concept of links and paths introduces several architectural and design
questions crucial to allowing for correct trust assessment of higher-level concepts such as path-level
integrity. For example, can the algebra of agents be extended such that links and paths can be consid-
ered independent trust agents, or should they simply be treated as an evaluation of several atomic trust
propositions with an associated decomposition function?

Treating links and paths as independent agents may introduce modelling complexity as well as the impli-
cation that a link or path would subsequently be a new independent trust agent capable of forming trust
opinions and providing referrals itself. In reality, this is not the case, and it would, therefore, be more
accurate to represent links and paths as aggregated logical expressions (again using logical operators).

As an example, a link may be represented through the combination of atomic trust propositions in relation
to node-level properties (i.e. “Secure boot for Router X stands”) and link-specific properties (i.e. “The
link between Router X and Router Y has high bandwidth”). This approach avoids the unnecessary com-
plication of introducing the link as a stand-alone agent itself. Again, however, it is important to consider
which logical operators to use to accurately encapsulate a specific trust property of any given link or path.
Furthermore, the decomposition function required to derive the final ATL of a complex proposition must
be weighted properly to ensure that trust characterisation is accurate.

4.5.5 Subjective Logic Fusion

It is crucial to implement SL fusion as a means for the Global TAF to derive a final ATL that accurately
conveys its opinion of a trust proposition in the case where the Global TAF receives multiple opinions
(that may be complementary or contradictory) in relation to the same trust proposition, and, if necessary,
additionally incorporating the Global TAF’s own opinion on related supporting evidence. It is important to
select the most appropriate fusion operator given the context and collected evidence, in order to mitigate
the impact of low quality (and/or incomplete) evidence, or evidence that is submitted maliciously in an
attempt to degrade the trustworthiness of a neighbouring node. In general, the fusion operator determines
how agreement and disagreement among sources is handled, and various options include:

• Cumulative fusion: Typically preferred when evidence is sparse and complementary, reducing un-
certainty by prioritising differing sources that cover differing aspects,

• Weighted fusion: Better suited to evidence that is heavily overlapping (and possibly incomplete),

• Consensus fusion: Draws attention to cases where an entity disagrees with an overwhelming ma-
jority, and

• Epistemic fusion: Useful when evidence is largely contradictory, placing priority on uncertainty and
disagreement between contributing entities.

Fusion also directly plays a role when considering the composition of links and paths. For example, we
must consider how a Global TAF fuses the opinions of each entity participating in a link and/or a path so
that it can provide an accurate evaluation of link and path-related trust propositions.

CASTOR D2.1 Public Page 48 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

It is crucial that the correct fusion operators and logical operators are chosen given the trust property
being assessed, and it will be equally important to have a systematic process to enable this selection
for every trust assessment calculation as it cannot be assumed to be a constant throughout the runtime
phase.

CASTOR D2.1 Public Page 49 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 5

Multi-Path Control & Agility for Optimal
{Network, Trust}-Aware E2E Path
Construction

In continuation to CASTOR’s capabilities in providing failure isolation (at the routing plane) and explicit
trust information management for end-to-end secure communication, in what follows, we focus on the
other core building block towards flexible and agile route control via trusted, continuously updated
paths: That is the enrichment of the control plane with trust- and network-aware decision making fea-
tures that allow multi-path control - a strong, influential property enabling both senders and receivers to
control the end-to-end forwarding path establishment over nodes/segments (routing subplanes) that can
exhibit the Required Trust Level (RTL) for enhanced resilience, availability; i.e., data transmission path
establishment and maintenance capturing all network and trust requirements from the incoming
service intents (requests). This is based on the provision of an optimization layer for efficiently react-
ing to both incoming service requests but also to any changes in the network and trust characteristics
of the underlying infrastructure and data plane. The goal is to identify the optimal network-management
decisions over a set of pre-established path profiles (adhering to different network and trust characteris-
tics) so as to be able to recommend the optimal set of forwarding paths featuring the required network
agility over routing compute elements that can verifiably guarantee the required (from the SP) level of
end-to-end assurance.

This, however, translates to the formulation of a complex {network, trust} optimization problem captur-
ing both the network representation specifics (including topology and temporal semantics) as well as
the trust characterization of the entire routing fabric (i.e., routing compute elements) as multiple objec-
tives/constraints that need to be achieved/resolved. In contrast to traditional shortest-path problems (as
is the current landscape of most prominent routing protocols including source and segment routing as
described in Section 2.2.3), the goal is not to simply minimize a cost function, like distance or delay, but
to also maximize the “trust profile” of the established path; i.e., forward packets over routes comprising
elements equipped with trusted computing capabilities that can guarantee the integrity of the entire com-
munication with specific attention to availability, resilience, privacy. Considering both network and trust
properties, this inherently becomes a multi-objective optimization problem: for instance, minimizing path
length or latency while maximizing the minimum trust level along each peering link and, consequently, the
end-to-end path. This, in turn, can directly affect the set of trust relationships to be established between
endpoints adding another dimension on the optimization complexity towards trusted path construction
over only those essential entities that need to be part of the path segment - thus, minimizing also
any possible impact on the already formulated path segment compound for the other service intents.

Historically, Border Gateway Protocols (BGP) and LDP were used for deploying Layer-3 and Layer-2
VPN services, between different administrative domains, whereas “IS-IS” or OSPF are used as Interior

CASTOR D2.1 Public Page 50 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Gateway Protocol (IGPs) for fast next-hop convergence as part of the (inter-domain) traffic engineering
process. However, as aforementioned, IGP Prefix-SIDs are used to send traffic on the shortest
path to a node or prefix. This shortest path metric is usually the accumulated IGP path link metric cost.
Multiple shortest paths may be identified if the optimization was to be done considering additional network
metrics: IGP cost, TE cost, or delay. In this context, Flexible Algorithm enhances such segment routing
protocols allowing network operators to deploy multiple logical topologies (Flex-Algos) on top of the same
physical network infrastructure. Each Flex-Algo can run its own Shortest-Path First (SPF) optimization
objective and set of constraints. Prefix-SID segment lists, with each list belonging to a different Flex-Algo,
can be used to steer traffic to the same egress PE loopback address.

It becomes evident that accounting for a combinatorial consideration of the available trust states
(of devices HW and SW) and the available network resources, that are candidate to be utilized
for path selection, explodes the design space problem; especially when this needs to be considered
during runtime for unlocking scalable routing updates with high path freshness guaranteeing continuous
SSLA compliance. While this is not a new challenge in the topic of trusted path routing in MANETs [132],
elevating it into a hyper-heuristic problem optimization extending the set of constraints beyond traditional
performance-driven objectives (scalar-represented objectives) to also include trust modelling as a first-
class optimization dimension has not yet been formally defined. Considering that ATL semantics cannot
be directly measured as scalar values but more as probabilistic encodings of an element’s trust state
(Chapter 4), incorporating the concepts of uncertainty and disebelief in the overarching optimization
pipeline requires a careful choice of representation.

The remaining of this chapter focuses on fleshing out this set of specific questions that need to be an-
swered for the best modelling of explicit trust representation as a constraint or a set of cost functions
in the context of trusted path routing and route control. The goal is to start with the simple modelling
of network- and trust-related metrics been considered as separate optimization problems, been solved
sequentially (having scalability challenges), so as to then identify the optimal conjunction of the two de-
sign space representations. After breaking down the inner-workings of the simple constraint satisfaction
problem, in an optimization layer (Section 5.1), we put forth the (3) core research avenues that will dictate
CASTOR’s optimization design principles summarized in Section 6.2.7 and detailed in D5.1 [41].

5.1 Explicit Path Identification

This section provides (from a global perspective) the constraint satisfaction formulation for the NP-
hard trust-path routing problem studied in CASTOR: Let the network be modelled as a directed graph
G = (V,E) where V is the set of vertices and E is the set of edges. The vertices in v represents the
routers in the network topology. The edges in E represent the directional (peering) links connecting the
routing elements in the network topology.

Figure 5.1 presents a network topology in which we consider the need to provide service connectivity
from the left most router S1 to the egress router D1 (endpoints). Based on the key insights that are avail-
able by the network telemetry data and the CASTOR-enabled trust evaluations, the Traffic Policy Engine
(Section 3.1) is possible to construct a rich topology graph with attributes that characterize different as-
pects of the routing plane. In their simplest form, such attributes may be associated with node and edge
entities in the graph capturing the network and trust state of each node and link. However, based also
on the composite trust evaluations that were identified in Chapter 4, it is also possible to extend this
attribute design space to characterize entire paths or even network segments in a domain. This allows
for a more granular traffic engineering process where CASTOR-enabled trusted path construction
and control is considered only at the level of ingress/egress interfaces (thus, allowing ISPs to
still control paths internally which, however, might lead to link-level trust or network property vi-
olations) or at the next-hop level which leads to a higher level of security and failure isolation at

CASTOR D2.1 Public Page 51 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

S1 D1
u1

u2

u3

u4

u5

u6

e 1

e
2

e4

e5

e
8

e 9

e7e6e3

Integrity(u1)=H

Trust attribute

Network attribute

La
te
nc
y(
e 1
)=
VL

Latency(e4)=VL

La
te
nc
y(
e 9
)=
VL

Integrity(u5)=VH

Integrity(u2)=H

Integrity(u3)=VL

Latency(e
8)=M Integrity(u6)=H

Integrity(u4)=H

L
a
t
e
n
c
y
(
e
7
)
=
V
L

Optimization Legend

Node/Edge attributes Policies with network/trust reqs.

Minimize ΣHopCount(ej)

Latency(ej) < M

Integrity(ej) > M

Latency(e
6)=H

Policy1

Policy2

Figure 5.1: Routing topology with network and trust attributes and possible paths satisfying different
policies

a link level. In the following example, we consider the latter case where the trust model comprises all
relationships and links between physically connected routers. Eventually, this enriched knowledge of the
underlying infrastructure layer culminates to the construction of TE policies (e.g., Policy1 and Policy2)
that are able to offer fine-grained network and trust-related guarantees in the forwarding plane.

Building on top of the example topology of Figure 5.1, we consider that each node vi ∈ V has three trust
attributes, namely {Integrity, Resilience, Confidentiality} obtainable individually by functions Integrity(vi),
Resilience(vi), and Confidentiality(vi), respectively. Integrity, Resilience, Confidentiality are defined
over the enum Very Low (VL), Low (L), Medium (M), High (H), and Very High (VH).

We have to highlight that improving one objective (e.g. shorter paths) may worsen the other (lower trust)
so the goal is often to find a set of solutions, Pareto-optimal routes, or apply lexicographic/weighted
optimization to balance both objectives.

Integrity(vi), Resilience(vi), Confidentiality(vi) ∈ {V L,L,M,H, V H} (5.1)

Each directional edge ej = (vi, vi′) ∈ E that connects node vi with vi′ has network attributes La-
tency, Bandwidth, and HopCount obtainable individually by functions Latency(ej), Bandwidth(ej), and
HopCount(ej), respectively. Integrity, Resilience, Confidentiality are defined over the enum Very Low
(VL), Low (L), Medium (M), High (H), and Very High (VH).

Latency(ej), Bandwidth(ej), HopCount(ej) ∈ {V L,L,M,H, V H} (5.2)

Let S and D be set of all ingress (source) and egress (destination) routers, respectively. Let P be set of
all solution paths. Let PSx,Dy be the set of all paths between source Sx ∈ V and destination Dy ∈ V . A
Path Pz = (v1, v2, ..., vn) is in PSx,Dy if (vi, vi+1) ∈ E ∀vi ∈ Pk and v1 = Sx and vn = Dy.

We have to highlight that improving one objective (e.g. shorter paths) may worsen the other (lower trust),
so the goal is often to find a set of solutions, Pareto-optimal routes, or apply lexicographic/weighted

CASTOR D2.1 Public Page 52 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

optimization to balance both objectives.

5.1.1 A Generic Example of Multi-Constraint Optimization Problem Definition

Inspired from the enriched topology graph of Figure 5.1, it is possible to formulate the problem of identify-
ing the optimal paths that satisfy the requirements of a single policy as a constraint satisfaction problem.

As a domain operator, and given a set of ingress and egress nodes, I want to find a near-optimal set of
paths that meets all of the following requirements:

• Bandwidth does not fall below Medium.

• Latency does not go above Low.

• Confidentiality is evaluated as Very High

• Hop count is minimal

• Integrity is maximized

• Integrity cannot fall below Medium

Inputs : S and D

Output : P

Objective: Find all PSx,Dy ∈ P ∀ Sx ∈ S and Dy ∈ D such that

∀Pz ∈ P ∀ej ∈ Pz ∀(vi, vi′) ∈ ej

• Bandwidth(ej) ≥ M

• Latency(ej) ≥ L

• Confidentiality(vi) ≥ V H and Confidentiality(vi′) ≥ V H

• Minimize
∑

HopCount(ej)

• Maximize
∑

Integrity(ej)

• Integrity(vi) ≥ M and Integrity(vi′) ≥ M

5.2 Control Plane: Beaconing for Optimal Forwarding Path Identi-
fication

The problem of explicit identification of the optimal set of possible forwarding paths in CASTOR includes
several challenges: All revolving around the careful selection of representation semantics that can allow
the convergence of a large attribute design space (capturing all network- and trust-aware corner cases)
with high degree of scalability so as to efficiently manifest into deployable TE policies, providing meaning-
ful and enforceable trust adaptive to topology changes and any routing updates needed for maintaining
path control; i.e., minimizing future service migrations due to workload changes.

Challenge: This leads to the first central question that needs to be examined: “How can trust be
represented and integrated into CASTOR’s multi-objective routing optimization?” This challenge

CASTOR D2.1 Public Page 53 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

stems from the fact that while network-related metrics can be represented as scalar values, this is not
the case with trust-related information that go beyond (binary-expressed) properties like resilience and/or
availability. The node- or link-level trust characterization, based on such a model, results in probabilistic
(projected) values trying to engrain the level of uncertainty and/or disbelief as part of the overall represen-
tation to which the monitored evidence can support the extract trust proposition - especially in the case
of evidence-based trust assessment theory such as the Subjective Logic employed in CASTOR.

CASTOR Convention I: The first approach is to pass the (SL-based) expressed trust opinions generated
by the Trust Assessment Framework directly into the optimization stage. This preserves all trust seman-
tics—the triplet (b, d, u) representing belief, disbelief, and uncertainty—and, therefore, allows the (explicit)
optimal routing configuration based on the direct interpretation of the monitored trust-related evidence.
In other words, it embeds the uncertainty representation as part of the optimization layer and not as an
add-on information given by the Trust Assessment Framework: Rather than forcing a trust assessment
decision, in this case trust uncertainty, discounting and/or fusion are considered different dimensions of
the optimization problem which evolve over time. This allows the blending of evidence - representing
both belief and disbelief while leaving room on how link-level trust characterizations can affect the trust
level of the overall path segment. This allows us to adjust the routing topology dynamically as more data
becomes available. Such an approach aligns naturally with the evolving trust model encountered in net-
work topologies and would, in principle, allow CASTOR to select paths that account not only for the
estimated trustworthiness of network elements but also for the reliability of the underlying mea-
surements. However, this expressiveness comes with substantial computational overhead. Full trust
opinions are multi-dimensional, they require complex fusion or discounting operations when aggregated
across a path, and they do not map efficiently onto the scalar objective terms needed by multi-objective
routing solvers or QUBO/Ising-based formulations. Given that the trusted routing problem is NP-hard
and CASTOR aims to support real-time path computation, maintaining the full Subjective Logic structure
inside the optimizer would significantly limit scalability.

CASTOR Convention II: A second, more practical approach is to project each probabilistic trust opinion
into a single scalar value (e.g., projected probability) before it reaches the optimization layer. This creates
a compact numerical trust indicator that retains the essential meaning of the underlying trust assess-
ment while being far easier to incorporate into multi-objective formulations. Such scalar values can be
aggregated along candidate paths, combined naturally with latency or bandwidth metrics, and encoded
efficiently in binary optimization models used by quantum or quantum-inspired solvers. By reducing the
dimensionality of trust information, scalar projection improves computational efficiency while preserving
the connection to the evidence-driven evaluations of Chapter 4. Nevertheless, the projection inevitably
reduces expressiveness, eliminating explicit modelling of uncertainty or disbelief. Careful calibration is
therefore necessary to ensure that the chosen projection method aligns with operator goals, risk posture,
and service requirements. Despite this simplification, this approach offers a strong balance between trust
fidelity and runtime efficiency, making it particularly suitable for real-time or near-real-time optimization
scenarios targeted by CASTOR.

CASTOR Convention III: The third approach relies on the categorical path profiles, supported by a single
or a combination of ASes (Section 3.1), capturing those domains where path segments with a uniform
trust representation can be formed. This, essentially, translates to path segment formulation over routing
compute elements that exhibit equivalent network and trust capabilities; i.e., achieve Medium (M) Integrity
with High (H) Resilience over Low(L) latency communication channels. Here, trust is not optimized numer-
ically but is instead used as a policy filter: only paths that satisfy the required trust thresholds—for exam-
ple, Integrity at least Medium or Confidentiality at least High—are considered eligible before network-level
optimization begins. This method integrates seamlessly with SSLA-driven service provisioning, reduces
the size of the search space significantly, and supports rapid decision-making. However, by treating
trust categorically rather than numerically, this approach cannot capture fine-grained trust differ-
ences and may exclude paths that narrowly fall short of a threshold even when they would oth-
erwise offer superior performance. Consequently, while trust profiles ensure strong policy compliance

CASTOR D2.1 Public Page 54 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

and excellent runtime behaviour, they provide limited flexibility for nuanced trust-performance trade-offs.

In summary, the three approaches offer different balances between trust expressiveness and computa-
tional feasibility. Using full Subjective Logic opinions preserves maximum detail and remains closest to
the envisioned trust semantics (Chapter 4), but introduces significant complexity for multi-objective rout-
ing. Projecting opinions into scalar trust values provides a more compact form that can be integrated into
the aforementioned optimization model instances (Section 5.1), while still maintaining continuity with the
underlying evidence in TAF. Using categorical trust profiles offers a straightforward way to enforce SSLA
requirements and reduce the search space, though with reduced granularity. Each approach therefore
carries its own strengths and considerations, and their suitability must be examined in light of CASTOR’s
ambition to support trusted path computation under real-time or near real-time conditions. The current
analysis does not prescribe a single solution; rather, it identifies the key trade-offs that must be explored
further as CASTOR advances toward a fully trust-aware optimization framework.

Challenge: This brings us to the second major question: ”What computational techniques and hard-
ware (classical, quantum) are suitable for solving the trusted routing problem, and how mature
are they for real-time use?”

CASTOR Convention IV: This challenge is essentially directly related to the efficiency, scalability and
extensibility requirements, described in Section 2.1 so as to overcome existing scaling issues in cases of
network fluctuations, where routing protocol convergence can require minutes. When this is considered
together with security and high availability, resilience properties, it comes with even a higher cost resulting
in lower efficiency and further diminished scalability. High performance and scalability with high degree
of trust are required for viability in the current economic environment. We, therefore, explicitly seek high
efficiency in multi-path generation: The optimization layer is expected to produce multiple candidate
path segments per path profile. Consequently, the number of solutions to be maintained, evaluated and
validated increases significantly - especially considering also that this process might need to be triggered
every time there is a new service workload to be deployed or change in the underlying network topology
(e.g., addition on removal of a routing element). Therefore, the question remains on how can CASTOR
framework scale the optimization process to handle multiple valid paths per profile, while maintaining
computational efficiency and minimizing redundant evaluations?

A novel approach that CASTOR aims to explore is the employment of Quantum Annealing (QA) mecha-
nisms (Section 2.2.9). QA is well suited to combinatorial optimization and aligns naturally with a QUBO or
Ising formulation of the routing task. However, despite its conceptual attractiveness, current QA hardware
remains limited in scale, connectivity, noise characteristics, and energy landscape control. As a result,
existing annealers cannot yet support real-time or near real-time operation, particularly in the context of
large, dynamic, and multi-domain network environments such as those targeted by CASTOR. For this
reason, Quantum Annealing cannot form the primary execution path of CASTOR’s routing optimization
engine. Nevertheless, the conceptual framework of a QUBO/Ising formulation remains extremely valu-
able. Once CASTOR defines the trusted routing problem’s cost function, combining both network and
trust dimensions into a unified mathematical representation, this formulation can be solved not only by
quantum hardware but also by a broad family of quantum-inspired and classical optimization algorithms.
These approaches offer a far more mature and scalable technological base for real-time operation.

Quantum-inspired methods such as Simulated Bifurcation, Coherent Ising Machines, can process large
QUBO instances efficiently using classical hardware while drawing on principles inspired by quantum
physics or nonlinear dynamical systems. Such solvers are already capable of handling thousands or tens
of thousands of variables with millisecond-scale iteration times, making them strong candidates for CAS-
TOR’s real-time optimization needs. Alongside these, classical heuristic or meta-heuristic approaches
remain important baselines that provide robustness, transparency, and ease of integration into the overall
architecture.

In this context, QA will still be investigated within CASTOR, but with a research-oriented role rather than
an operational one. QA experiments will allow the project to benchmark current and emerging quantum

CASTOR D2.1 Public Page 55 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

hardware against quantum-inspired and classical methods, evaluate scalability constraints, and identify
potential future pathways as quantum technology matures. This comparative analysis will enrich CAS-
TOR’s understanding of the trade-offs between computation time, solution quality, problem size, and
hardware requirements across different optimization paradigms. Overall, CASTOR will adopt a prag-
matic and forward-looking approach: formalize the trusted routing problem as a QUBO instance, explore
quantum-inspired and classical algorithms as viable real-time solvers, and evaluate Quantum Anneal-
ing as a research instrument for comparative assessment. This strategy ensures that CASTOR remains
aligned with current technological realities while positioning the system to leverage future advances in
quantum computing.

Challenge: Finally, it is important to consider the last fragile aspect in the overall traffic engineering
process where this optimization pipeline needs to be engrained: “How the optimization process can
support fine-grained path control without inhibiting ISPs from traffic engineering?”

CASTOR Convention V: This challenge unveils a complex and multi-faceted problem in traffic engineer-
ing: On the one hand, many service intents (as will be the case of the envisioned Aerospace targetted
use case detailed in Chapter 8) require link-level security and trust guarantees, during the SSLA confor-
mance checks, which might limit the path control maintained by the ISPs as part of a path segment. This,
in turn, might limit the applicability of the offered solution. On the other hand, keeping the optimization
process targetted at recommending path solutions at the level of ingress/egress interfaces (path segment
establishment) while minimizing the complexity of the overall process, it might offer limited application
due to the inability of converting these path segments into enforceable TE policies. For instance, con-
sider the example illustrated in Figure 5.1: A path segment traversing over nodes u1, u2, u3, u5, u6 while
violating some trust properties at a link level (i.e., between nodes u3 and u5), it still might capture the
required network and trust properties at a path segment level - because the exhibited trust level between
(for instance) nodes u5 and u6 is calculated as Very High, thus, discounting the Low integrity level of the
previous link in the hop. However, even if this path level control allows transparency to the ISPs, it is not
as obvious on how to translate it to enforceable routing policies especially considering the Segment Rout-
ing paradigm. What is the optimal set of affinity link colours or SR-TE policy colours that capture
such level of abstraction without affecting the solutions already converged across the other path
profile segmentations? Each path profile defines a unique optimization design space. However, these
profiles are not independent. For example, path optimized under one profile may share resources with
another optimized path. Therefore, the question remains, how can the CASTOR framework efficiently
manage the interdependencies between multiple path profile specification without compromising on the
solution quality or convergence time? This challenge is particularly relevant because it may hinder the
parallelization of optimization search for multiple path profiles, severely affecting the scalability of the
optimization engine.

This challenge is further aggravated considering the fact that when two or more path segments are
computed on the same set of link state (both network- and trust-related information), it is possible that the
resultant paths will compete for limited resources within the network. This might result in success for only
the first path segment to be calculated (by the optimization layer), or it might be the case that no path can
be established. Batch processing, back-off times, recommendation of alternate paths, and crankback can
help mitigate this sort of problems but it is not straightforward as to how they can be integrated into the
overall optimization process.

Together, these challenges define the scope of CASTOR’s ongoing research in developing a scalable,
adaptive, and trust-aware optimization framework for explicit path identification. CASTOR, by address-
ing them, would be the first frame work to produce path recommendations that remain both valid and
trustworthy in highly dynamic, multi-domain networking environments.

CASTOR D2.1 Public Page 56 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 6

CASTOR Conceptual Architecture and
Functional Components

6.1 CASTOR Conceptual Architecture

CASTOR’s trust-aware approach to traffic engineering requires a comprehensive framework that spans
the compute continuum, addressing both the routing and control planes, while encompassing lifecycle
management of network elements and ensuring service assurance guarantees. To better describe all the
different aspects and technical details of the CASTOR framework we, first, define four concrete phases
that characterize all relevant network entities throughout their operational lifecycle (Figure 6.1): i) Pre-
paredness, ii) Service Registration, iii) Proactive and iv) Reactive. As can be seen from this high-level
figure, the four phases are not strictly sequential. While some aspects focus on the the service lifecycle,
others address the configuration and behaviour of the network topology.

Preparedness phase

Phases in CASTOR framework

Reactive phase

Proactive phase

Specify Service catalogue
Specify TAF requirements
Maintain trust posture of network

React to drop in the ATL
React to network defects
Enforce alternative TE policiesProactive phase

On-board a network element
Attest router capabilities
Establish CASTOR key hierachies

Service Registration phase

Express of Secure SLAs
Translation to Domain-specific intents
Enforcement of TE policies
Management of TE policies

Figure 6.1: High-level phases in CASTOR framework

The Preparedness phase relates to all the configurations that allow an OSS environment to fulfil new
service requests and to guarantee the required level of assurance. This phase covers aspects that
span across the compute continuum, hence, part of it assumes that the network topology - i.e., the
infrastructure layer - is already in place. Starting from the preparation at the orchestration layer, it is
crucial for any domain operator to specify the envisioned service catalogue. In CASTOR, this involves the
specification of the different path profiles that may satisfy varying levels of network and trust requirements.
The preparedness phase expands, also, on the mechanisms that allow CASTOR to identify the optimal
paths that accommodate the offered service catalogue, as well as the means to enforce the selected
trust-aware routing policies in the infrastructure layer. Finally, to ensure the assurance of all registered
services, the preparedness phase covers the provisioning of the probing mechanisms that need to be in

CASTOR D2.1 Public Page 57 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

place in the network elements, allowing the continuous and dynamic evaluation of the (S)SLA compliance
of an established service.

Once all elements of a domain vertical are prepared, the Service Orchestrator is able to serve incoming
service requests. In this context, once the critical service-level objectives are negotiated and agreed
between the relevant parties, the Service Registration phase describes how the CASTOR framework is
able to realize the service placement when a new request of (network and trust) intents is expressed by a
service provider. This phase expresses the flow of converting the high-level service into domain-specific
requirements and the enforcement of the appropriate traffic engineering policies at the infrastructure layer.
This allows the end-to-end interconnectivity that allows the service to user a network path that satisfies
the network and trust related objectives established in the (S)SLAs.

The instantiation and configuration of the orchestration layer — in the context of the CASTOR prepared-
ness phase — allows the Service Orchestrator to proactively onboard additional routers dynamically as
well as adapt the already recommended paths accordingly. First, the Proactive phase captures the
interactions between the newly incoming router and the Service orchestrator in order to realize the se-
cure onboarding process through the secure transmission of the necessary guarantees pertaining to the
correct state of critical router functionalities. At the same time, similar guarantees are exchanged in the
data plane between network elements, thus allowing for the discovery of possible secure links across the
topology. All these actions provide the necessary evidence to the orchestrator in order to successfully
enrol the new node in the topology and include it in the envisioned paths to be established. Secondly,
it is also possible that the current version of the infrastructure topology is unable to meet the expected
requirements. For example, it is not possible to establish a path with the necessary security guarantees
when all routers comprising the infrastructure layer are running with a specific firmware vulnerability. Con-
sequently, the proactive phase ensures that the necessary security mechanisms are also enforced in the
infrastructure layer in order to enable the realization of particular types of (S)SLAs.

Finally, the Reactive phase focuses on the aspects that the CASTOR framework offers once a service is
deployed and served through the underlying infrastructure. Throughout the service lifecycle, there are nu-
merous changes that may cause an established traffic engineering policy to no longer satisfy the specified
(S)SLA terms. There are different types of reaction strategies to cope with these situations, depending
on the specific use case. Regardless of the communication fabric on top of which a path is established,
there are inherent mechanisms that the routing protocols provide to allow a network to self-heal upon a
dramatic change in the topology (e.g., continuous re-calculation of the shortest path in a topology based
on an IGP metric, candidate paths and on demand next-hop configurations in SR TE policies). Even
though these mechanisms will be examined throughout the instantiation of the CASTOR architecture, the
concept of the CASTOR reactive phase refers to the capability of the overarching framework to adapt
to the latest changes and enforce new policies—if needed—to ensure the continuous adherence to the
established SLAs. Overall, in the context of the CASTOR framework, we distinguish the possible runtime
changes according to their root cause: either network-driven or trust-driven. As analyzed in the following
subsections, the former category focuses on the reaction in the traffic engineering policy provisioning
when a network element gets attached to or detached from the topology, or any network-related disrup-
tion occurs (e.g., traffic congestion in one the links of a path, physical damage in an Ethernet connection
between two network elements). On the other hand, the latter category examines compromises in the
agreed security guarantees due to a significant decrease in the trustworthiness level of a network element
(on a link or even on an entire path). In this context, it is the CASTOR framework that enables the calcu-
lation of the possible strategies that allow the re-establishment of trust in the network topology, e.g., by
enforcing new security policies over the existing paths or by enforcing completely new traffic engineering
policies.

Figure 6.2 presents the high-level blueprint of the CASTOR architecture. This figure shows the core
CASTOR technologies and their placement across the compute continuum, shaping the path towards
trust-aware Traffic Engineering policy enforcement. In the following, we delve into the realization of each
phase of the CASTOR framework, showcasing the flow of operations between the various CASTOR

CASTOR D2.1 Public Page 58 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

artifacts deployed from the network elements up to orchestration plane.

Secure Oracle Layer

Facility Layer

Topology Graph

Trustw
orthiness C

laim
s

per node/link/path

Global TAF

Trust Network Device Extension
(TNDE)

Attestation
source

Tracing Hub

Local TAF
agent

FSM
source

Collect Evidence
from Trust SourcesTN-DSM

H

D

Receive Trust Policy
from DLT (onboarding + runtime)

B
DORE

TNDI-SP
(For Trustworthiness Claims)

TNDI-SP
(For Trustworthiness Evidence)

TNDI-SP
(For raw traces)

Provision resources:
i) Launch router functionality
ii) Join phase (Attest TNDE platform)Enforce policies:

- Routing configuration
- Flex algo definition

11

C

Enforce SR policies in ingress path element

Router element 2

Trust Network Device
Extension

TN-DSM

i
Events from adjacent

path elements that may
trigger invalidation of a

path

i.1 Link State Packet with trust reports

i.2 Link State Packet with network metrics

i.3 Stamped Passport with invalid claims

ii

iii

TPL Data
Connector

Share trust recommendations
coming from neighboring routers

Local TAF
agent

Infrastructure Layer

Communicate Stamped Passports
with adjacent router elements

TNDI-SP
(For Device-level ATLs)

13J

Enforce policies:
- Routing configuration
- Flex algo definition

12

A

Router element 1

Multi-ordered
Signature Creation

E

F

I

d1
GForward trust-related evidence

and proceed with steps H-I-J d2

Trust Network
Device Interface

(TNDI)

Router
Services

Network
Operating

System

Trust Network
Device Interface

(TNDI)

Router
Services

Traces

Transmit trust-related data
in dedicated data channels

Service Orchestrator

In
fr

as
tr

uc
tu

re
La

ye
r T

op
ol

og
y

G
ra

ph
 (T

G
)

Tr
us

t
R

el
at

io
ns

hi
ps

(T
R

)

Su
bj

ec
tiv

e
Tr

us
t

N
et

w
or

ks
(S

TN
s)B

P3

ω3

A

P1 P2

ω1 ω2
B
ω3

P3

Path Profile X
A

P4

B

P5

ω4 ω5

P3

A

P4

B

P5

...

...
A

P2

B

P1

A B

C

D

Orchestration Layer

List of offered path profiles
(Definition of Required Network and Trust profiles)

Network &
Security
Intents

Map to
offered

Path Profile
satisfying service

requirements

1

7

Infrastructure Layer
Capabilities

e

g

Path
profilesa

Risk Assessment

Asset
Modelling

Threat
Modelling

Risk Quantification Engine 6

Update topology
with network

and trust attributes

Traffic Engineering
Policy Engine

Central Control
Service

Optimization Engine

Operator Network elements
(hardware and software assets)

Send Path Profile Catalogue Requirements

Path Profile
Catalogue Engine

Service Intent Translation
& Decomposition ServiceApplication

Service
Provider

b

Risk-aware RTL
per trust proposition

3

2

Enforce
TE policies

10

- Topology Graph
- Path Profile Reqs.8

Get
recommended
paths per
path profile

9

 Trust Awareness API

Telemetry API PCE

Share network and
trust telemetry data

13K

c

When applicable (i.e., non-flat network, no candidate path available, and
PCE enabled in SR policy), request for new paths via PCE protocol

Service order
High-level intents + agreed (S)SLAs

Fulfillment
acknowledgement

Notifications on Service Assurance
(e.g., SSLA compliance)

Se
cu

rit
y

C
on

te
xt

 B
ro

ke
r

Trust Exposure Layer

Layer 3:
TNDI-SP Validation through

ZK proofs &
reduced # of handshakes

Layer 1:
Attribute-based Access Control

per interaction

CASTOR Layered Access Control

CASTOR DLT

Get Trust Capabilities of the domain
with the necessary level of abstraction

Potential Service Providers
Domain Infrastructure Providers

Security Context Broker

TEE-enabled
off-chain worker

1 Preparedness Phase

CASTOR Phases

A

i Reactive Phase

Proactive Phase

a Service Registration Phase

f (S)SLAs to be recorded for
auditability and traceabilty purposes

Global and Local Trust Policies
per path profile

4

Se
cu

rit
y

C
on

te
xt

 B
ro

ke
r

Receive Trust Policy
per path profile from DLT
5

Network
Operating

System

Ba
se

d
on

 S
SI

-a
lig

ne
d

VC
st

ru
ct

ur
es

Key Management System

SE Interface

Key Management System

Crypto Agility Layer

Layer 2:
Whitelisting

Service
Assurance status

Trustworthiness
evidence

Raw Traces

Figure 6.2: CASTOR high-level architecture

6.1.1 Preparedness phase

CASTOR’s preparedness phase covers the provisioning of the control plane, enabling the specification of
the service catalogue with its translation into a set of traffic engineering policies that satisfy both network-
and trust-related requirements. In the context of CASTOR, the service catalogue of the resources man-
aged by the Service orchestrator is equivalent to the types of traffic engineering policies that can be
offered by the operator with respect to network and trust capabilities. Consequently, this allows the oper-
ator to define the path profile catalogue (Step 1, Figure 6.2) which captures the various network and trust
capabilities that will be offered by the underlying infrastructure layer. This is also intrinsically linked to the
telemetry data (i.e., network and trust attributes) that need to be measured during the operational phase
of the topology. Along with the offered path profiles—capturing network and trust attributes—the opera-
tor specifies the Trust Policies that need to be enforced in the Local TAF agents (as well as the Global
TAF) to ensure that the infrastructure layer is trustworthy with respect to the security guarantees that
the infrastructure needs to attain when serving the security SLAs (SSLAs) upon a service request. The
derivation of the appropriate Trust Policies that need to be assessed is dependent on the security posture
of each network element to be considered in the topology (Step 1). Hence, based on the envisioned trust
requirements captured in the path profile catalogue (Step 2), the Risk Assessment component is able to
derive the minimum required trust level that needs to be satisfied by a router element for it to securely
participate in any of the envisioned path profiles (Step 3). The derived Trust Policies are recorded on the
CASTOR DLT (Step 4), allowing onboarding routers to pull the device-applicable Trust Policy in order to
perform the required trust evaluations during the operational phase.

CASTOR D2.1 Public Page 59 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

The aforementioned steps can take place as part of the design phase of the orchestration layer, in the
sense that they do not require the infrastructure topology in place. However, the remaining steps of
the preparedness phase require the router elements to be securely onboarded and configured so that
telemetry data arrives at the orchestration layer. First, this refers to the establishment of network telemetry
channels that provide fresh evidence from the underlying infrastructure layer to the Service Orchestrator.
At the same time, through the enforcement of the Trust Policy in the overall CASTOR Trust Assessment
Framework (Steps 5), it is possible for the Global TAF to calculate the trust propositions that characterize
the security posture of the infrastructure layer (Step 6). All these pieces of information, namely the
topology graph and network telemetry data from the Service Orchestrator and the trust telemetry data
from the Global TAF, allow the construction of a mirrored Topology Graph maintained by the CASTOR
Facility Layer (Step 7). The telemetry data is reflected in the Topology Graph in the form of network- and
trust-related attributes that may characterize any element in the topology: a node, a link, or an entire
path. This CASTOR-enriched topology information provides guidance on the elevation of runtime trust
characterization into routing configuration that can be applied via the Service orchestrator. For example,
through traffic engineering practices, labelling a network link can be associated with the capabilities that
the participating routers exhibit. This enables the specification of routing policies that include instructions
to avoid any link that is characterized by a specific label (e.g., signalling that the confidentiality trust
property cannot be achieved). But most importantly, the Topology Graph provides all the necessary
information that allows the identification of the optimal paths in the infrastructure layer that are able to
accommodate the requirements of the offered path profiles. The trust-enriched insights in the Topology
Graph allow central control services - such as the CASTOR Traffic Engineering Policy Engine to search
for optimal paths that can satisfy the supported path profiles in the service catalogue. In order to do so,
it needs to trigger the Optimization Engine (Step 8) which is responsible for receiving the latest topology
posture - i.e., Topology Graph - and provide a set of recommended paths that are able to accommodate all
path profiles in the catalogue (Step 9); so that the Service orchestrator can deploy them when a respective
service order request arrives (the transition from a service order to a path profile is explained further below
in the Proactive phase). The output of the Optimization Engine is leveraged by the Traffic Engineering
Policy Engine (Step 10) which is able to provide the Facility Layer with all the traffic engineering policies
that need to be enforced so as to accommodate the corresponding path profiles; either on demand or prior
to any service order request. Depending on the nature of the prepared traffic engineering policies and
the requirements of the operator, the Facility Layer may trigger the Service Orchestrator to enforce the
policies (Step 11), e.g., by setting up BGP extended communities, defining a Flex Algo definition satisfying
the characteristics of a path profile, and enabling a dynamic Segment Routing Traffic Engineering policy
to contact the PCE for the path provisioning. Alternatively, it may leverage the CASTOR-extended PCE
component deployed in the control plane in order to enforce the requested Segment Routing Segment ID
list in a semi-automated manner (Step 12).

6.1.2 Service Registration phase

The Service Registration phase captures the processing of an incoming service request up to its fulfil-
ment. As shown in Figure 6.2, the first concept refers to the translation of high-level intents coming from
the service provider to concrete, domain-specific requirements that can be enforced in the infrastructure
layer (Step a). Even though this intent-layer logic is not considered part of the CASTOR framework, it
is captured in the overall architecture for completeness capturing also the knowledge that needs to be
shared from the lower orchestration layers - e.g., in terms of the path profiles and the topology network
and trust capabilities. These concrete requirements allow the association of the established (S)SLAs with
a specific path profile that can be provisioned in the domain (Step b). Based on the work performed as
part of the preparedness phase, the Service Orchestrator is able to spawn a new path based on the rec-
ommended policies that are maintained by the Traffic Engineering Policy Engine. The latter component
has all the necessary information (from the Facility Layer) to make a decision (Step c) on the policies

CASTOR D2.1 Public Page 60 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

that need to be enforced in the infrastructure layer. This involves the configuration of the appropriate
network elements either via the available management interfaces of the Service Orchestrator (Step d1)
and the actual enforcement of the traffic engineering policies via a path computation element (PCE) in-
terface (Step d2). Of course, in the case that there is no available recommendation to accommodate a
new service request, the Traffic Engineering Policy Engine may trigger the Optimization Engine (Steps
8-10) to re-calculate a fresh set of recommendations considering the latest network and trust profiles re-
flected in the Topology Graph. Once the path is provisioned, the Orchestration layer is able to provide an
acknowledgement to the Service Provider notifying them on the availability of the requested path. After
this step and throughout the lifecycle of the service, CASTOR allows the Service Orchestrator to contin-
uously monitor the (S)SLA compliance when it comes to both the network- and trust-related service-level
objectives. This status along with additional information pertaining to the service assurance (e.g., level
of assurance or trust capabilities characterizing the service/) are offered to the Service Provider via the
Trust Awareness API (Step f).

6.1.3 Proactive phase

As shown in Figure 6.2, in the context of preparing the enrolment process of a router element in the topol-
ogy, the operator needs to specify the minimum requirements that a candidate router element needs to
adhere to in order to successfully enrol the topology. These requirements mainly revolve around the se-
curity guarantees that a router (i.e., a Trust Network Device Interface as further explained in this chapter)
need to demonstrate when enrolling in the topology. The derivation of these requirements is coupled with
the risk posture of each router element, i.e., hardware and software characteristics—as an isolated asset
but also as part of the envisioned network topology (Step 1 of the preparedness phase). An additional
aspect that needs to take place prior to the enrolment process of a router element relates to the ability
to evaluate the specified security requirements. In the context of CASTOR, the Trust Network Device Ex-
tension attached to a network element is able to process collected traces from the target router function-
alities. The available evidence and the local trust evaluations enable the overarching Trust Assessment
Framework to identify—with an adequate level of uncertainty—whether the specified requirements are
satisfied. Consequently, the final step of this design phase requires the specification of all the necessary
aspects—in the form of Trust Policies—that need to be enforced across the compute continuum so as to
enable the derivation of the final trust decision that will dictate whether a candidate router element can
enrol the topology.

Once all policies are in place, it is possible for the operator to serve any enrolment requests when a router
element wants to join the topology. In the context of managed networks, this process can be realized by
the orchestration layer. Specifically, as shown in Figure 6.2 (Step A), the Orchestration Layer interacts
with the candidate router element to request the necessary guarantees (e.g., attestation evidence) that
the router functionality has been securely launched including the CASTOR artifacts that are deployed in
tandem with the router element. The successful execution of this process grants access to the router
to proceed to the next phases of the enrolment process. On the one hand, this unlocks the router to
access and enforce the corresponding Trust Policy to the Local TAF agent from the CASTOR DLT (Step
B). This provisions the collection of the relevant evidence from the underlying Tracing Hub (Step C) and
the processing of the collected traces by the relevant Trust Sources (Step D). Based on this evidence
(Step E), the Local TAF agent is able to perform the trust computations on a local, in-router level and
share the perceived trust reports with the control plane. Specifically, data that are required for the deriva-
tion of the final ATL values by the Global TAF are transmitted through secure and confidential TNDI-SP
channels (Steps H-I-J), while the final local Trust Decisions are shared via extended telemetry probes to
the Telemetry API (and the Service Orchestrator) for visualization and reporting purposes (Step K). In
addition, depending on the Trust Policy, the candidate router is able to share trustworthiness evidence
with the neighbouring routers (Step F) to allow the establishment of provisional links across the topology.
Based on the concepts of IETF’s Trusted Path Routing concepts, each router is able to share attestation

CASTOR D2.1 Public Page 61 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

quotes with their network adjacency (i.e., neighbouring routers) attesting to the secure boot of the router.
On this basis, CASTOR aims to enrich these capabilities by extending the attestation functionalities to
cover runtime characteristics as well, enabling both the establishment but also the continuous evaluation
of trust during the operational phase of the network. All available evidence is forwarded to the Local TAF
agent of the receiving routers, and all trust reports are securely shared to the Global TAF deployed in
the orchestration layer through secure and confidential TNDI-SP channels (Step G); allowing the orches-
tration to complete the final trust evaluations and decide whether the candidate router can successfully
enrol the topology. Overall, it is worth noting that a key aspect in the preparedness phase relates to the
provisioning of the necessary cryptographic keys at the in-router TNDE side, so as to enable different
communication interfaces outside of the router element. For instance, as illustrated in Figure 6.2, there
are different cryptographic material for establishing and managing the confidential TNDI-SP channels (the
blue key icon for establishing different TNDI-SP data channels between the TNDE and the CASTOR DLT,
whereas a different brown key is provisioned for the TNDI-SP channel between the TNDE and the Global
TAF for the transmission of trustworthiness claims).

Finally, as part of the proactive phase, we take into consideration any actions that allow the infrastruc-
ture layer to serve one of the offered path profiles. Specifically, it is possible that the existing onboarded
topology is not able to serve one of the intended path profiles, e.g., due to insufficient assurances on the
integrity or due to a cascading attack that may leverage a vulnerable ingress router to affect its neigh-
bouring ones. Consequently, as part of the proactive phase, we include the enforcement of security
policies that will help reduce the risk posture of the underlying topology. Such security policies may refer
to the application of a security control that mitigates a critical vulnerability or to the extension of the target
environment that is continuously monitored by the CASTOR Trust Network Device Extension in order to
collect more evidence that can provide stronger guarantees that the router is behaving as expected. Con-
sequently, even though the problem of seamless security control enforcement is considered orthogonal
to the objectives of the project, CASTOR provides all the core enablers that allow the orchestration layer
to achieve a high-level zero-touch service management.

6.1.4 Reactive phase

The objectives of the CASTOR framework go beyond the establishment and continuous evaluation of
trust-aware traffic engineering policies. In fact, one of the core objectives of the CASTOR framework is
the re-establishment of trust and adaptability of the instantiated path recommendations when a change
is detected in the underlying topology. Updates to established traffic engineering policies are typically
triggered by two main categories of events, based on their source: network-driven changes and trust-
driven changes. Each category has different characteristics requiring specific reaction strategies by the
CASTOR framework to ensure a seamless transition to alternative traffic engineering paths without ser-
vice disruption. That is, CASTOR’s goal is to preserve the (S)SLAs of the actively deployed application
services.

There are two lines of defence that are envisioned in CASTOR. First, CASTOR engrains trust charac-
terization into traffic engineering policy provisioning, as it allows to attribute network links with traffic
engineering metrics that are related not only with network properties (e.g., low-latency, network cost) but
also trust properties (e.g., level of assurance capturing integrity aspects of the target router environment).
Consequently, dynamic traffic engineering policies can accommodate network objectives while also re-
specting trust-related constraints (e.g., run shortest path first algorithm while excluding any link with no
integrity and confidentiality guarantees). In addition to the attribution of links (or nodes) depending on the
network and trust characteristics collected in the CASTOR Facility Layer - forming the Topology Graph
- the operator can enhance reaction strategies as part of the enforced traffic engineering policies. For
instance, in the context of Segment Routing Traffic Engineering, there can be policies with multiple can-
didate paths as a restoration mechanism, allowing one (e.g., either the operator or a controller entity
such as a PCE) to trigger a path switchover, leading to the headend router to divert its traffic through an

CASTOR D2.1 Public Page 62 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

alternative path; or even enable local, fast re-routing capabilities so that the intermediate path elements
can decide on their own a viable solution to minimize the time it takes for the notification to reach the
ingress router. In this first line of reaction strategies, the CASTOR mechanisms in the orchestration layer
provide all the mechanisms that allow operators to define the traffic engineering policies that can best
accommodate the network and trust guarantees reflected in the corresponding path profile.

The second line of reaction strategies refers to the actions that the CASTOR orchestration layer can
enforce directly through the PCE component. Regardless of the source of change in the infrastructure
layer, the Topology Graph is able to capture all attributes of the network (through the Telemetry API of
the Network Orchestrator) and trust (through the Global TAF evaluations). As already discussed in the
proactive phase, the CASTOR TNDE is able to capture any change pertaining to the router element that
it is deployed. In addition, such events may flow across the data plane (Step i). This can be either in
the form of the Stamped Passports (Step i.3) or in the form of Link State Packets. Regarding the latter
category, the Link State Packets may include notifications about a network-driven change (Step i.2) in
the topology, e.g., a link has been disconnected. In addition, CASTOR examines how to leverage differ-
ent Link State Packet extension mechanisms to encapsulate trust-related information flowing across the
infrastructure layer (e.g., IETF 8665 on OSPF Extensions for Segment Routing, or IETF 9086 on Border
Gateway Protocol - Link State (BGP-LS) Extensions for Segment Routing BGP Egress Peer Engineering).
The availability trustworthiness evidence (e.g., Stamped Passports) and trust reports (e.g., through Link
State Packet extensions) in a router element (i.e., TNDI) allow the corresponding Local TAF agent to form
trust relationships - and hence opinions - about its neighbouring routers (Step ii). This sets the scene for
the construction of a trust plane, whereby Local TAF agents share enriched information with the Global
TAF, focusing on both their trustworthiness and that of their adjacent entities (Steps H–I–J). A change in
the mirrored Topology Graph triggers the Optimization Engine to revisit its existing recommendations and
revise them to accommodate the envisioned network and trust capabilities in each path profile based on
the latest view of the infrastructure layer. Depending on the output of the optimization engine, the CAS-
TOR orchestration layer may enforce new traffic engineering policies through the management interfaces
to the corresponding router elements (control-plane optimization) or download (Step iii) new set of paths
in the existing policies via the PCE (data-plane optimization).

6.1.4.1 Network-driven

This category constitutes the legacy events that may impact a network topology and, consequently, the
well-established types of SLAs. Existing routing protocols are capable of detecting such changes, e.g., a
network interface in a router’s interface becomes inactive, or even reacting to such events with automated
steering and fast re-routing capabilities. Such events may arrive to the control plane either via the data
plane updates, e.g., through link state updates that are reflected in a controller entity, or via control plane
interfaces, e.g., through the provisioning of network telemetry data from the infrastructure layer. In the
CASTOR architecture, all these metrics are mirrored in the Topology Graph that is maintained in the
Facility Layer. As any of the network-driven events is reflected in the Facility Layer, no matter if occurring
in the nodes and links comprising the network topology or in any of the network attributes characterizing
the existing topology, the Optimization Engine can receive the latest view of the underlying topology and
adjust its recommended paths accordingly.

6.1.4.2 Trust-driven

CASTOR provisions the security guarantees that each router needs to exhibit throughout its lifecycle,
in order to participate in the network topology and serve application workflows. Expressing, also, the
objectives of the established SSLAs, these guarantees are encoded in (domain-specific) Trust Policies
that dictate i) the raw traces that need to be collected, ii) the security properties that need to be evalu-

CASTOR D2.1 Public Page 63 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

ated, iii) and eventually the trust propositions that need to be assessed in order for the overarching trust
assessment framework to derive a trust decision on the assurance of the deployed services.

During the runtime behaviour of a router element, the CASTOR Trust Network Device Extension allows
the continuous monitoring of the target security properties that need to be assessed as per the enforced
Trust Policy. When a violation is detected, e.g., by the Attestation Source or the Finite State Machine
source, this allows the Local TAF agent to form trust opinions on atomic trust propositions that are tailored
to the evidence that are collected. Depending on the enforced Trust Policy, the notification of a violation
detected by the CASTOR TNDE enablers may require the recording of the relevant evidence to the
CASTOR DLT for auditability and post-processing purposes. Through the provision of the necessary
TNDI-SP channels, the raw traces - pertaining to an observed violation detected by the (in-router) TNDE
- are recorded in a confidential and privacy-preserving manner so that only authorized entities (e.g.,
hardware vendor of a router, operator of the infrastructure layer) can access and process them.

Once the local trust evaluations have been performed, both the computed trust opinions and the nec-
essary evidence are shared with the Global TAF in the orchestration layer in a secure and confidential
manner through the CASTOR TNDI-SP. This information allows the Global TAF component to re-evaluate
the trust propositions that help form a trust decision pertaining to the fact that the deployed application
workload is served over a path that adheres to the trust-related defined in the offered path profile that
serves the established SSLA. Upon a detected violation, the Global TAF may evaluate that a link (or a
path) is unable to continue offering the trust requirements of a particular path profile. This trust (re-)
evaluation is reflected in the routing policies and also in the updated Topology Graph to be used by the
Optimization Engine. This will allow the Optimization Engine to offer a new set of recommended paths
for the particular path profile, excluding the nodes/links that are related to the detected violation. These
recommendations are converted into policies through the Traffic Engineering Policy Engine. Depending
on the operator’s requirements, the resulted policy can be enforced via the network orchestrator through
legacy management interfaces (e.g., RESTCONF session) or in a semi-automated manner via the PCE.

6.2 CASTOR Functional Components

Name Main purpose
Orchestration Layer (and above)

Service Intent Translation & De-
composition Service

Given an incoming service request, it translates the received high-level set of In-
tents to Service Level Agreements covering network (typical SLAs) and securi-
ty/trust (Security SLAs; SSLAs) requirements.

Path Profile Catalogue Engine Maps service requests (and SSLAs) to one of the offered path profiles.
Facility Layer Manage/Serve (CASTOR- and application-related) requests from/to the different

orchestration layers.
Service Orchestrator Manage resources (e.g., Spawn new VM for a vRouter function).
Telemetry API Interface for collecting trust- and network-related telemetry data from the opera-

tional environment (i.e., network).
Topology Graph Maintains a view of the trust- and network-profiles associated with the underlying

network topology.
Trust Awareness API Exposes interfaces to provide meaningful information with respect to the Service

Assurance to the corresponding Service Provider.
Path Computation Element Implements the Path Computation Element Protocol and enforces the SR policies

realized by the CASTOR framework.
Risk Assessment Engine Calculates the risk graph of the observable network segments taking into consider-

ation the threats that can affect the router elements (threats related to hardware/os/-
software stack); and contributes to the derivation of the risk-aware RTL logic to be
enforced in the Global and Local TAF agents based on the offered path profile cat-
alogue.

CASTOR D2.1 Public Page 64 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Global TAF Assesses the trust profile of all the observable network segments based on the
available evidence (i.e., Local TAF reports and additional trustworthiness evidence
from each router).

Optimization Engine Given the offered path profile catalogue and a snapshot of the (network and trust)
characterization of the network segments, it recommends a set of optimal (primary
and backup) paths that can satisfy the (network and trust) objectives associated
with each path profile.

Traffic Engineering Policy En-
gine

Maps the set of recommended paths for each path profile into enforceable: i) Flex
Algo Definition (FAD) to be advertised across the network segment, and ii) SR
policy to be instantiated into the ingress node of the requested workload.

Secure Oracle Part of the CASTOR DLT; checks the veracity of the data before being stored on
the DLT.

Security Context Broker Part of the CASTOR DLT; provides interfaces for authorized entities to interact with
(i.e., process/consume) the on-chain data.

Trust Exposure Layer Part of the CASTOR DLT; exposes interfaces for external stakeholders to access
trust capabilities that are provided by a domain, while maintaining the necessary
level of abstraction.

Infrastructure Layer (Routing plane)
Trust Network Device Exten-
sions (TNDE)

All the CASTOR components that are deployed in a network device (i.e., router
element) to enable trusted TNDI onboarding, runtime monitoring, and trust assess-
ment. The TNDE forms the main device-side TCB of CASTOR (together with the
Trace Units operated by the TNDE’s Tracing Hub).

Trust Network Device Interface
(TNDI)

(Managed by the TN-DSM) Unit of a network device that joins a CASTOR network
domain for trusted path routing (e.g., a vRouter). The TNDE securely collects run-
time evidence and performs local trust assessments for each TNDI.

Trust Network Device Security
Monitor (TN-DSM)

(Part of the TNDE) Enables a CASTOR orchestrator to attest the correct state of the
TNDE and securely onboard one or multiple TNDIs of a network device to the CAS-
TOR network domain. The TN-DSM implements the TNDI-SP to expose control
and data channels towards CASTOR’s upper layer components for configuration
and trace/evidence/ATL sharing. The TN-DSM manages and reports the secure
collection of trustworthiness evidence and local ATLs for each TNDI via the Tracing
Hub, supported Trust Sources (i.e., Attestation and FSM sources), and local TAF.

Trust Policy Language (TPL)
Data Connector

(Part of the TNDE) Retrieves the Trust Policy (i.e., Trust Model, RTL Logic, Target
Trust propositions) of the operator for a TNDI and enables it in the Local TAF agent.
The TPL Data Connector is configured by the orchestrator via the TN-DSM using
the TNDI-SP control channel.

Tracing Hub (Part of the TNDE) The Tracing Hub is configured by the TN-DSM based on the
trust policy to monitor runtime configuration and behavior traces of a TNDI for the
evidence generation by the attestation and FSM sources. The Tracing Hub can
operate multiple different Trace Units to collect TNDI traces.
The Tracing Layer constitutes an overarching term that incorporates the tracing
capabilities in CASTOR. This includes the Tracing Hub as well as any Trace Unit
that may be connected to it in order to provide meaningful trace information to the
CASTOR framework.

Trace Unit The Trace Units are the TNDE-external tracing mechanisms operated by the Tracing
Hub to collect configurational and/or behavioural traces from the TNDIs. CASTOR
considers the exploration of different types of Trace Units, some located outside the
TNDIs, some inside the TNDIs. The Trace Units are part of CASTOR’s device-side
TCB in the sense that the trustworthiness of the raw traces of that particular unit
depends on the unit’s security.

Attestation Source (Part of the TNDE) Serves attestation requests and provides fresh attestation
claims based on the traces collected of a TNDI (e.g., about a router’s OS).

FSM Source (Part of the TNDE) Receives runtime behavior traces of a TNDI via the Tracing Hub.
The agent leverages pre-learned FSMs to detect anomalies from a TNDI’s “normal”
(benign) behavior and generates respective evidence for the TAFs.

Local TAF Agent (Part of the TNDE) Performs the dynamic trust assessment within the network de-
vice based on the evidence received from the Attestation and FSM sources. It
reports the ATLs to the relying parties (Global TAF, Orchestrator, DLT, and neigh-
bouring routers) via the TN-DSM, e.g., through TNDI-SP data channels.

Table 6.1: CASTOR Artifacts - Naming convention

CASTOR D2.1 Public Page 65 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

6.2.1 SLA Translation & Decomposition

The Service Intent Translation & Decomposition Service (SITDS) is responsible for taking the high-level
“service ask” from the Application Service Provider formalized and encoding the required trust and net-
work properties straight from the Service Level Agreement (SLA) and Secure SLA (SSLA) into Default
and Fallback Intents. This is the crucial semantic step: it binds business commitments (availability, in-
tegrity, confidentiality, latency, etc.) to technical requirements that the rest of the system can reason about
and later enforce.

Before initiating the process for this component, negotiations with the Service Provider must take place.
During these discussions, the required SLAs and SSLAs are defined, agreed upon, and subsequently
submitted to SITDS. Then, SITDS consults the Path Profiles Catalogue and current Topology & Path
Profiles. As soon as the Facility Layer responds, SITDS maps and translates each SLA to Intents that are
capable of satisfying the desired trust and performance specifications, and then forwards them for further
processing to the Facility Layer.

The encoded intents are forwarded to the Path Profile Catalogue Engine, which is responsible for gather-
ing and matching them against the available path profiles. Once the mapping is completed, the resulting
profiles return to the Facility Layer.

At this stage, the Facility Layer publishes the current global and local trust policies for each path profile to
the blockchain, managed by the CASTOR DTL component.

To enforce the generated path profiles on network devices, the Facility Layer supplies the Optimization
Engine with the target network scope, trust profiles, and topology. Once candidate paths are computed,
they are forwarded to the Traffic Engineering Policy Engine, which compiles them into device-ready, en-
forceable configurations. After the Facility Layer receives these configurations, it delivers them to the Path
Computation Element (PCE) for activation and network-wide deployment.

Facility Layer

Send request
acknowledgement

CASTOR
DTL

Service Intent Translation &
Decomposition Service

Encoding required
Trust and Network
Profiles based on
(S)SLAs to Intents

Application
Service Provider

Commit service specification
(SLA & SSLA)

Path Profile
Catalogue Engine

Send Topology &
Path Profiles

Optimization Engine

Send Profiles

Map Intents
to Path Profiles

PCE

Send required
target Path Profiles
and topology graph

Send Segment
Routing Policies

Traffic Engineering
Policy Engine

Send Routing Policies
and configurations

Send Intents

Request Topology &
Path Profiles

Publish SLA &
SSLA status

Send raw SLA & SSLA

Send request
acknowledgement

Request
Recommended Paths

Send required
target Path Profiles
and topology graph

Figure 6.3: Translation of intents to enforceable policies

In CASTOR, inter-domain service provisioning is pretended to be transparent to the service provider/re-
quester, delivering seamless end-to-end (E2E) services across multiple administrative domains. This
model assumes pre-existing peering agreements that establish a trusted basis for cooperation. When
a service request arrives, coordinated control-plane interaction among the participating domains is re-
quired—either via a higher-level E2E Orchestration entity or through direct PCE-to-PCE communica-
tion—to negotiate and instantiate the inter-domain connectivity. Such coordination may involve exchang-
ing BGP routes and deploying inter-domain TE policies, ensuring consistent policy enforcement and
performance guarantees across domain boundaries. Detailed implementation choices and operational
procedures for these cross-domain mechanisms will be specified in Deliverable D5.1.

CASTOR D2.1 Public Page 66 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

6.2.1.1 Intent and SLA Standards

In order to standardize the terms used in this document, this section will define the concepts used:

• Intent: Intent is the formal specification of all expectations including requirements, goals, and con-
straints given to a technical system. (TMForum - Intent in Autonomous Networks v1.3.0 (IG1253))

• Service Level Agreement (SLA): A SLA is an element of a formal, negotiated commercial contract
between two Organizations, i.e. one with a Service Provider (SP) Role and one a Customer Role.
It documents the common understanding of all aspects of the Product and the roles and responsi-
bilities of both Organizations from product ordering to termination. SLAs can include many aspects
of a Product, such as performance objectives, customer care procedures, billing arrangements,
service provisioning requirements, etc. (TMForum - GB917 SLA Management Handbook R3.1)

• Secure Service Level Agreement (SSLA): The SSLA (Secure Service Level Agreement) func-
tions as the first intent within Intent Based Networking Management (IBNM) systems, serving to
define Security and Service Level Objectives (SSLOs). This initial intent is structured to conform to
the requirements provided by stakeholders and end users, particularly regarding trust. The scope
of the SSLA’s objectives is essential security requirements, including confidentiality, privacy, au-
thentication, and protection against specific attacks. Establishing the SSLA is the initial step in a
workflow that ultimately moves to enforcement, leading to the creation of specific policies, rules,
and profiles for security-related properties and service provisioning.

• SLA Negotiation: SLA negotiation refers to the dynamic process through which Service Provider
and CASTOR establish and agree on quality of service, security, and reliability parameters that
govern their interactions, ensuring that data exchange and resource access meet predefined ex-
pectations without undermining trust. Rather than being static, this negotiation often involves adap-
tive mechanisms that consider context, capabilities, and risk tolerance, allowing systems to align
performance guarantees — such as latency, throughput, and availability — with security assur-
ances, including confidentiality, integrity, and compliance. This negotiation is beyond the scope of
CASTOR, so it is assumed that the negotiation will occur before our service is reached.

6.2.2 CASTOR Orchestration

Figure 6.4 presents the CASTOR orchestration message sequence chart when a service provider initiates
an intent-based service order. The diagram outlines the steps that follow the triggering of the CASTOR
Facility Layer. Network- and trust-related telemetry data are continuously collected and sent to the Facility
Layer, originating from the local TAF and the telemetry API, which receives data from the edge layer. This
enables the Facility Layer to construct a fresh Topology Graph with all the network and trust-related
attributes that characterize the infrastructure layer. This information is crucial both when negotiating a
new SSLA (see Section 6.2.1), but also when the Traffic Engineering Policy Engine needs to provide
new TE policies based on fresh recommendations from the Optimization Engine. Based on the available
Topology Graph and the selected path profile requirements, the Traffic Engineering Policy Engine decides
whether to request fresh recommendations from the Optimization Engine. If so, and upon computation
of the recommended paths, the Optimization Engine sends them back to the Traffic Engineering Policy
Engine, which generates the corresponding routing policies. Eventually, this allows the Traffic Engineering
Policy Engine to trigger - via the Facility Layer - the Service Orchestrator to configure the underlying
infrastructure resources (e.g., deploy the necessary pods, including source and destination pods) and/or
also activate the PCE to enforce the required routing paths.

CASTOR D2.1 Public Page 67 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 6.4: Orchestration flow of actions when there is an intent-based service order

Figure 6.5 illustrates the orchestration flow when a new node joins the network. In this scenario, the
CASTOR orchestrator initiates the triggering of the Facility Layer. The Facility Layer updates the topology
graph and sends the updated graph along with relevant telemetry data to the traffic engineering police
engine, which requests from the optimization engine to recalculate the recommended paths. These are
passed back to the traffic engineering policy engine, which returns the new routing policies to the Facility
Layer. As before, the Facility Layer initiates the service orchestrator to deploy the necessary pods and
activates the PCE to manage the communication setup.

Figure 6.5: Orchestration flow of actions when a node joins the network

Figure 6.6 depicts the orchestration flow in response to topology changes, such as a node drop or de-
parture. These events are detected by the telemetry API, which triggers the Facility Layer to update
the topology graph. The subsequent steps, triggering the traffic engineering policy engine, optimization
engine, Facility Layer, service orchestrator and PCE, follow the same process as described above.

CASTOR D2.1 Public Page 68 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 6.6: Orchestration flow of actions when a node leaves/drops the network

As an example of its main actions, the service orchestrator relies on a Kubernetes-native deployment
model to realize intent-based services. It manages the instantiation, configuration, and lifecycle of ser-
vices represented as containerized pods, which are stored in an image registry and instantiated on-
demand across a cluster of worker nodes. The orchestration pipeline ensures the correct placement and
interconnection of service pods (e.g., endpoints in a slice), infrastructure pods (such as vRouters, load
balancers, and telemetry collectors), and control-plane components (such as the optimization engine or
PCE), all of which may run as microservices within the cluster. The Kubernetes control plane handles
resource scheduling, pod health, node status, and network policies through CNIs. Virtual links between
vrouters (Kubernetes pods) is created by assigning each pod its own unique IP address, forming a shared
network that enables IP-based communication between pods managed by CNI plugins.

The orchestration flows described in Figure 6.4 to Figure 6.6 can also be understood through the four
discrete phases identified in Section 6.1.

In the preparedness phase, the operator defines the service catalogue (e.g., the path profile catalogue)
within a Kubernetes-managed environment. While the service itself is represented by a set of pods
stored in an image registry, the services offered by CASTOR are also implemented as pods, managed
through Kubernetes. The path profile catalogue, defined and maintained by CASTOR, will be stored in a
dedicated database. At this stage, service intents must also be translated into domain-specific policies,
enabling their fulfilment through the orchestration framework.

In the service registration phase, once the orchestration environment is configured, service requests
can be registered through an interface exposed to the user. Service deployment involves instantiating
the required pods on the appropriate worker nodes and configuring the corresponding vRouters. The
same interface used to register a request also provides feedback to the client, notifying them when the
requested service has been successfully deployed.

The proactive phase addresses the modification of network resources, including both the addition and
removal of nodes/resources. For example, the orchestrator may deploy new vRouter pods and configure
them as required. Alternatively, a new physical node may initiate its own onboarding process, reaching
out to the orchestrator once it joins the network. Secure and authenticated communication may involve
the exchange of keys managed as part of the pod’s security context configuration. SLA compliance
is continuously monitored through telemetry collection mechanisms (e.g., Prometheus), which extract
performance metrics from pods and potentially report link-state information (via BGP-LS, IS-IS LSPs, or
other methods). Alerts are generated when SLA violations are detected, enabling proactive responses
before service quality degrades.

In the reactive phase, when SLA assurance is compromised, CASTOR’s self-healing capabilities come
into play. Events such as node failures or link degradation trigger telemetry updates that propagate

CASTOR D2.1 Public Page 69 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

through the orchestration chain (Facility Layer, optimization engine, routing construction engine, orches-
trator, PCE). The orchestrator may respond with corrective actions, such as migrating pods, spawning
replacements, updating container images, or applying patches. Alerts raised by monitoring systems
(e.g., Prometheus AlertManager) can be delivered via messaging platforms like Kafka, where CASTOR
services listen for events and execute mitigation strategies.

While the current orchestration framework demonstrates dynamic, intent-based control of 5G services
using Kubernetes, several open challenges must be investigated. One such challenge concerns the
co-existence of router services and security controls on Kubernetes worker nodes. Specifically, it re-
mains unclear how the virtualization of vRouters affect the trust characterization that CASTOR aims to
support. A key question is whether secure isolation can be maintained when router functions and sensi-
tive workloads are co-located on the same physical infrastructure. Another important challenge involves
the latency between physical routers and virtualized network interfaces. The integration of physical and
virtual network paths may introduce delays, particularly through mechanisms such as container-based
interfaces or SRv6 encapsulation, potentially impacting end-to-end latency and SLA compliance. These
questions will be addressed in subsequent CASTOR deliverables through targeted evaluations, prototype
deployments, and performance assessments.

6.2.2.1 CASTOR Path Computation Element

A Path Computation Element (PCE) is a network component, defined by the IETF, that is responsible for
determining efficient end-to-end paths across a network, particularly in complex, multi-domain, or multi-
layer environments. It uses advanced algorithms and knowledge of the network topology, constraints
(such as bandwidth, latency, or policy), and traffic engineering requirements to compute optimal routes
that may not be easily determined by distributed routing protocols alone. The PCE can operate centrally,
and network devices (like routers) interact with it through the Path Computation Element Communication
Protocol (PCEP), enabling dynamic and flexible path setup—critical for applications such as MPLS-TE,
GMPLS.

Within this context, a PCE contributes to end-to-end service realization by computing paths for the
intra-domain segment and steering configuration at ingress and border routers in line with local traffic-
engineering constraints and SLA/trust objectives. Continuity beyond the domain boundary relies on pre-
established peering and inter-domain TE policies, while coordination—via higher-level orchestration or
PCE-to-PCE communication—stitches the per-domain segments into a consistent E2E service and pre-
serves policy alignment across domains.

A novel extension currently under research enhances the traditional PCE architecture by introducing an
intermediate functional block, the Enforcement Extension, between the PCE and the Path Computation
Clients (PCCs) on the Infrastructure Layer, aimed at bridging the gap between path computation and
operational enforcement. Unlike the default PCE–PCC model, where the PCE merely provides path
recommendations or delegates path setup, this new extension assumes responsibility for enforcing con-
figuration directly on the PCCs, ensuring that computed paths are not only selected but also consistently
applied across the network.

CASTOR D2.1 Public Page 70 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Optimization Engine PCE Edge Layer
(Network Equipment)

Enforce communication

Enforcement
Extension

Send Segment
Routing Policies

Facility Layer

Send Path Profiles
requirements

& topology graph

Send Routing Policies
and configurations

Traffic Engineering
Policy Engine

Encode Recommended
Paths into Segment

Routing Policies

Send Segment
Routing Policeis

Send Path Profiles
requirements

& topology graph

Request
Recommended Paths

Figure 6.7: PCE Extension

6.2.3 Distributed Ledger Technologies

CASTOR adopts and extends the usage of the Distributed Ledger Technology (DLT) as a dedicated
trust enablement layer that supports the management, monitoring and storage of all data related
to the trust lifecycle of compute continuum elements. In contrast to generic blockchain-based in-
frastructures, in CASTOR the DLT is utilised specifically to ensure that trust-related semantics are
consistently maintained across administrative domains, supporting secure decision-making dur-
ing path establishment and traffic engineering processes.

The integration of DLT in CASTOR facilitates the end-to-end lifecycle management of trust-related data,
ensuring that the data stored, exchanged and processed complies with varying confidentiality require-
ments and access control restrictions. Such trust-related data include attestation claims and raw traces
collected from the infrastructure layer, SSLA paramters that characterize the requirements that dictate
the service fulfillment and assurance, as well as the Trust Policies that encapsulate the Required Trust
Levels (RTLs) and Trust Models that need to be enforced by the different CASTOR TAF actors. Since
different types of trust data (such as attestation claims, trust models, SLA/SSLA thresholds) expose
different levels of sensitivity, CASTOR enforces granularity in access control policies. This enables CAS-
TOR to maintain the required balance between auditability of all trust data transactions and operational
efficiency when leveraging this information during runtime, without unnecessarily exposing sensitive or
infrastructure-specific details.

From a trust assurance perspective, CASTOR leverages the DLT to enable complete auditability of trust
data processing and verifiability of trust evidence ingestion. Upon their collection from the network edge
via the CASTOR TNDEs, attestation claims are transmitted via secure communication channels and
validated on-chain by means of secure oracles elevating Trusted Execution Environments (TEEs), such
as the Phala network or Phala-like confidential blockchain network envisioned in CASTOR.

Trust policies stored within the CASTOR DLT incorporates the envisioned trust models which specify
behavioural expectations and compliance requirements for network operation and characterising path
profiles (e.g., high availability, high integrity), together with the associated RTLs, and the relevant trust-
worthiness evidence needed for deriving the Actual Trust Level during runtime. Similarly, SSLAs are
anchored on-chain during service onboarding to establish the agreed trust and performance guarantees
between the Service Provider and the network operator. These are subsequently used as reference data
for automated detection and notification of any violation during runtime.

The specific mechanisms governing identity management and access control in relation to DLT-interfacing
components – including the three CASTOR access control categories and the enforcement of zero-trust
segmentation at system and per-property level – are described below.

In the following subsections, the main high-level workflows of the CASTOR DLT are presented, demon-
strating how different types of trust-related data are handled across the compute lifecycle. These work-

CASTOR D2.1 Public Page 71 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

flows focus on: (1) the management and monitoring of SLAs/SSLAs and the notification of their property
violations, (2) the definition and use of trust policies alongside runtime transmission of trustworthiness
claims, and (3) the controlled exposure of abstracted trust capabilities to authorized external entities.

6.2.3.1 CASTOR Multi-layered access control framework

In CASTOR, access to trust-related data managed via the Distributed Ledger Technology (DLT) infras-
tructure must adhere to different policies, depending on the sensitivity, origin and intended use of this
information. Since these data include trustworthiness claims, trust policies, runtime attestation submis-
sions and SLA/SSLA agreements, their management must respect auditability requirements while ensur-
ing operational efficiency for time-critical processes such as trust assessment and traffic engineering.

To enable selective access over highly granular trust-related content, CASTOR enforces three distinct
access control models, each mapped to a specific category of system actors. Following a top to bottom
approach, and considering also the overall CC-wide CASTOR architecture in Figure 6.2, we distinguish
the following access control layers:

• Layer 1: Layer 1: Attribute-based Access Control per interaction External actors such as
service providers, certification authorities or cross-domain orchestrators are granted access on a
per-request basis and must present proof of attribute ownership using Verifiable Credentials (VCs)
aligned with CASTOR-defined roles and policies. Requests are received either via CASTOR APIs
(for internal services) or through blockchain-based querying mechanisms for inter-domain inter-
actions. When access is requested, policy evaluation is conducted by the Trust Exposure Layer
based on pre-defined rules and access policies. If approved, the appropriate abstraction function
gets invoked so that the necessary obfuscation mechanisms are applied and the appropriate trust-
related insights are returned (e.g. minimum trust level, SLA/SSLA compliance flag), preserving
confidentiality.

• Layer 2: Whitelisted domains. As already mentioned in the introduction of this section, the
CASTOR-enabled managed domains are able to interact with the CASTOR DLT for auditability
and trust-related data exchange with the necessary level of abstraction. In this context, the main
control services - such as the Traffic Engineering Policy Engine - that are running with the same
locality as the Service Orchestrator are considered trusted components. In addition, even the rest
of the CASTOR components at the orchestration layer that can exhibit acceptable level of isolation
guarantees do not require updatable access policies. Hence, the concept of whitelisting in this layer
to encompass the static policies that are associated with the overarching CASTOR framework at
the orchestration layer. As shown in the following sequence diagrams, these components inter-
act with DLT-stored data using on-chain whitelisted blockchain addresses, eliminating the need for
continuous authentication or presentation of Verifiable Credentials (VCs). This approach supports
low-latency access to time-sensitive data (e.g. SLA violation events) required for seamless multi-
path control and overall lifecycle management of the underlying infrastructure layer. If required,
additional hardware-level attestation may be enforced at system bootstrap, but runtime validation is
not re-enforced.

• Layer 3: TNDI-SP Validation. CASTOR deployed elements contributing runtime trust evidence,
such as the Local TAF and other operational CASTOR components of the TNDE, are not inher-
ently trusted. They must authenticate when establishing communication session(s) with CAS-
TOR infrastructure. CASTOR uses session-based authentication, where identity validation occurs
once per session — typically during secure onboarding or session renewal. Authentication lever-
ages CASTOR Verifiable Credentials where applicable, and secure channel establishment uses
Diffie–Hellman-like authenticated key exchange mechanisms directly between the TNDE enclave

CASTOR D2.1 Public Page 72 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

and the Secure Oracle running within a Trusted Execution Environment (TEE). This reduces hand-
shake frequency and minimizes protocol overhead. In case of session updates, cryptographic key
rotation is used instead of full re-authentication. The TN-DSM supports key generation, manage-
ment, and refresh procedures. Details on the overarching concepts around the internal TNDE ar-
chitecture and the requirements that guide the designs on the confidential TNDI-SP data channels
is provided in Deliverable D3.1.

Overall, CASTOR enforces Zero Trust segmentation at workflow, component and trust property level.
Each service is mapped to a path profile, which in turn dictates specific access control and authentication
requirements applicable to different trust-related data segments. As a result, information derived from
multiple tenants or domains is processed within isolated Secure Oracle applications to prevent cross-
tenant leakage even if a key or component is compromised.

6.2.3.2 Storage of SLAs and SSLAs

In the Orchestration Layer of CASTOR system during the preparedness phase (step f in Figure 6.2), the
SLAs and SSLAs of a router that is prepared to onboard in the network - as defined by the Applica-
tion Service Provider in the form of service intents and translated accordingly in secure requirements -
have to be stored in the CASTOR DLT (Blockchain Infrastructure). As shown in Figure 6.8, the Facility
Layer makes the related request to the Security Context Broker (SCB) of the CASTOR DLT, which acts
as the sole trusted intermediary between the external CASTOR entities and the DLT. The SCB, lever-
aging its Attribute-Based Access Control (ABAC) capabilities, checks the attributes that are originated
from the Verifiable Credential of the domain operator and along with the deployed smart contract logic
they evaluate whether the invoker’s address (e.g., Externally Owned Account address) belongs to the
registered whitelist. Upon authorization, the transaction gets executed on-chain and the SSLA is stored
in the Private Ledger of the CASTOR DLT and can be further updated during the operational lifecycle of
the deployed services. Further details on the smart contract breakdown and the interfacing between the
relevant components is presented in Deliverable D5.1.

As shown in Figure 6.9, the Facility Layer submits the SLA/SSLA storage request to the Security Context
Broker (SCB), which operates as the trusted intermediary between CASTOR components and the CAS-
TOR Ledger. In this context, the Facility Layer is able to use the Layer 2 authorization flow presented
above in order to record SSLA data on-chain.

Once agreed, in high level, SLA/SSLA data is forwarded to the Secure Oracle or fetched by it, which
validates the integrity and correctness of the data before it is anchored on-chain in the CASTOR Private
Ledger. Storing these parameters on-chain enables both auditability (ensuring that historical agreements
can be validated transparently) and support for SLA/SSLA violation detection by authorized and regis-
tered stakeholders (through the Trust Exposure Layer as presented in the following subsection).

Beyond initial storage, SLA/SSLA parameters are continuously monitored by the Orchestration Layer. If
a violation occurs (e.g., exceeding latency bounds or falling below a required trust threshold), the orches-
trator issues a violation event. This event is submitted to the SCB, which maps it to the corresponding
SLA/SSLA record stored on-chain, creating a traceable audit record and triggering remedial action (e.g.,
policy adjustment, path reconfiguration or agreement renegotiation).

Furthermore, storing the SLA/SSLA on-chain provides the capability for authorized external stakeholders
to register for violation notifications. These notifications may be delivered via CASTOR APIs (for internal
entities) or through the Trust Exposure Layer, depending on integration requirements. Access to such
notifications is governed by CASTOR multi-layred approach presented at the beginning of this Section.

This process establishes the basis for real-time compliance monitoring and reactive trust-based network
management within CASTOR, ensuring that the guarantees agreed through the SLA/SSLA are not only
enforceable but also continuously verifiable.

CASTOR D2.1 Public Page 73 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

CASTOR Ledger

Execute
transaction(Optional) Secure

Management
off-chain data

Off-chain StorageFacility Layer

Record SSLA in a
dedicated smart contract

SCB

Layer 2 Authorization:
Evaluate whether the orchestration
layer entities belong to the whitelist

Service Intent Translation &
Decomposition Service

Store SSLA from a new
service registration request Flow a) Transaction with authorization flow

for Orchestration Layer access
Invoke smart

contract function

Figure 6.8: CASTOR DLT flow of actions - Storage of SLAs and SSLAs

6.2.3.3 Storage of Trust Policies

In CASTOR, Trust Policies define the operational trust conditions of compute continuum network ele-
ments. They specify the guarantees, behavioural expectations and compliance criteria that must be
evaluated during runtime. These policies indicate which raw traces must be collected and what trust
propositions must be assessed by the trust framework. Trust Policies form part of the CASTOR trust
model and include the Required Trust Levels (RTLs) associated with predefined path profiles (e.g., high
integrity, high availability), serving as reference criteria to determine whether nodes and links are eligible
to participate in a specific routing path.

As shown in Figure 6.9, during the proactive phase, the CASTOR Facility Layer submits the initial Trust
Policies to the DLT via the Security Context Broker (SCB), following ABAC-based authorization. This
process is a result of the risk analysis that is presented in Section 4.4 and culminates in the realization
of the RTL and the overall Trust Policy. Once the submission request is recorded on-chain, the Secure
Oracle detects the event and either retrieves the referenced policy data or receives it via an event listener
mechanism. The Secure Oracle performs authenticity and integrity validation inside a Trusted Execution
Environment (TEE) before the policy is definitively anchored on the ledger. The Secure Oracle operates
by continuously monitoring on-chain transactions and responding to relevant events. Once validation is
successful, subscribed TAF instances are notified via the SCB.

During runtime, trust-related data is collected from the routers using the Trust Network Device Exten-
sions (TNDEs), via dedicated TNDI-SP data channels. CASTOR introduces a key innovation by estab-
lishing an authenticated and encrypted enclave-to-enclave communication channel between the TNDE
within the routing device and the Secure Oracle running as an isolated application inside a TEE (see
Section 6.2.8.3). This is achieved using a Diffie–Hellman-like authenticated key establishment process
performed only once at the beginning of each session. To minimise communication overhead, session
updates trigger only key rotation rather than full re-authentication. Key lifecycle management, including
key generation and update, is handled by the TNDE Security Manager (TNDE-SM). CASTOR identity
management using Verifiable Credentials (VCs) supports authentication where required, although inher-
ently trusted components (e.g. orchestrator) are exempt from per-session VC presentation. Details of
this are discussed in the access control section. Runtime trust evidence may be processed using one of
the following approaches:

• TNDE → Local TAF → SCB → Secure Oracle → DLT (submission event recorded). The Secure
Oracle detects this on-chain event, fetches or receives the associated evidence, validates it inside
the TEE and, if successful, authorises final anchoring. This approach assumes trust in the Global
TAF for pre-processing.

CASTOR D2.1 Public Page 74 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

• TNDE → SCB → Secure Oracle → DLT (submission event recorded without TAF pre-processing).
The Secure Oracle monitors the event, retrieves or receives the evidence via the event listener,
validates it inside the TEE and approves anchoring. The Global TAF may later retrieve the evidence
directly from the ledger if required.

Figure 6.9 presents the former approach, focusing on how the Local TAF agent is able to carry out its
trust engineering process. Nevertheless, the recording of data coming from other TNDE artifacts is almost
identical, as the provisioning of the TNDI-SP channels is handled by the TN-DSM element depicted in
the sequence diagram.

The selection of the preferred processing approach will be finalised in future deliverables, based on trust
assumptions and performance requirements. This mechanism allows CASTOR to securely and efficiently
ingest runtime trust evidence from edge routing elements and validate it before anchoring on the DLT,
ensuring confidentiality, integrity and low operational overhead while supporting continuous runtime trust
assessment.

Off-chain Storage

Return Trust Policy

CASTOR Ledger

Execute transaction

Return Trust Policy

Emit event with associated VC

Local TAF agentGlobal TAF SCB

Execute
Flow a)

Submit transaction

Facility Layer TN-DSM

Layer 3 Authorization:
TNDI-SP validation process

Request to store new
trust-related data

Invoke smart
contract func.

Request to store Global and Local Trust Policies
per path profile using VCs

Notification for new Trust Policies to enrolled routers with validated Local TAF agents

Notification for
new Trust Policies

Forward trust reports through a dedicated TNDI-SP data channel

Flow a) Transaction with authorization flow
for Orchestration Layer access

(Optional) Manage
off-chain data

Request new
 Trust Policy

Secure Oracle

Request new Trust Policy through the TPL Data Connector
(this step is also executed as a first action of a newly onboarded router)

Execute transaction (Fetch Trust Policy Data)

Emit event

Submit
transaction

Layer 3 Authorization:
TNDI-SP validation process

Data Veracity
check

Flow b) Transaction with authorization flow
for Infrastructure Layer access

Securely Store
raw traces

Fetch Trust Reports

Layer 2
Authorization

Figure 6.9: CASTOR DLT flow of actions - Recording of Trust Policies

CASTOR D2.1 Public Page 75 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

6.2.3.4 Retrieval of abstracted trust capabilities

CASTOR introduces the capability to provide external stakeholders with controlled access to trust-related
information, enabling them to assess the trustworthiness of network infrastructure without exposing sensi-
tive internal data. Unlike static abstraction mechanisms, CASTOR does not store abstracted representa-
tions of trust data directly on-chain. Instead, abstraction is applied dynamically at query time, allowing the
Trust Exposure Layer to expose only the minimum required information based on the requesting entity’s
attributes and authorization level.

Such trust insights may include aggregated metrics (e.g. overall infrastructure trust level), compliance
evaluation results or notification indicators linked to SLA/SSLA violations. These capabilities are made
available to authorized stakeholders such as service providers, cross-domain orchestrators or certification
authorities.

As shown in Figure 6.10, the Trust Exposure Layer builds upon the CASTOR Blockchain Infrastructure
by extending the existing network exposure functionality with additional trust-related information. For
internal CASTOR entities (e.g. service orchestration platforms), access to this information is facilitated
via CASTOR APIs (e.g., Trust Awareness API).

Only entities presenting the appropriate attributes (whose evaluation model is defined in the access con-
trol section) may access this information. Upon an authorized query event, the Trust Exposure Layer
retrieves the relevant data from the DLT, processes it internally to enforce abstraction and privacy con-
straints, and returns only the permitted trust-related insights. This approach ensures that internal network
details are not disclosed while still enabling cross-domain collaboration and compliance verification.

This mechanism complements SLA/SSLA monitoring and runtime trust evidence flows by enabling ex-
ternal entities to retrieve policy-relevant trust conditions and react in cases where violations or non-
conformant trust states have been detected. It ensures that trust information can be leveraged in wider
traffic engineering and routing decision procedures without compromising confidentiality.

CASTOR Ledger

Retrieve domain
trust capabilities

Trust Exposure
Layer

Validation of
Service Provider's
Proof of Ownership

of required attributes

External
Stakeholder

Request domain trust capabilities

Initiate Layer 1
Validation process

Flow c) Transaction with authorization flow
for external accredited stakeholders

Attribute-based access control
based on extracted attributes

Return abstracted domain trust capabilities

Execution of abstraction function
for obfuscating sensitive
trust-related information

Figure 6.10: CASTOR DLT flow of actions - Abstraction of Trust Capabilities

6.2.4 CASTOR Risk Assessment Engine

6.2.4.1 Router type onboarding & Individual RTL Calculation

Phase 1, as shown in Figure 6.11, establishes the baseline trust requirements for router types before
deployment. This phase focuses on individual router evaluation independent of network topology context,

CASTOR D2.1 Public Page 76 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

providing the foundation for trustworthy network operations through evidence-based trust quantification.

The router onboarding process begins when the Network Operator’s Security Administrator provides a
list of specifications for each router type to be deployed to the CASTOR Risk Assessment Engine. As the
designated security role within the Network Operator’s domain, the Security Administrator is responsible
for defining security policies and managing trust requirements across the operator’s infrastructure. The
above specification list includes detailed hardware characteristics, such as CPU architecture, memory
capacity, and TPM capabilities, along with information on the software stack, including operating system
versions and firmware details. The Security Administrator also defines the intended operational role for
each type of router, whether it will function as an edge device, aggregation point, or core network element.

Following asset definition, the Security Administrator uploads cyber threat intelligence (CTI) data that
combine information from multiple sources. This data incorporates automated feeds from public and
private vulnerability databases, including CVE entries and CTI platforms, along with vendor-specific
threat intelligence from router and hardware manufacturers who provide detailed security advisories,
firmware vulnerability assessments, and hardware-specific attack vectors for their equipment. Data may
also include manual input of organization-specific threats and operational security concerns. This hybrid
approach ensures comprehensive threat coverage while enabling customization based on the organiza-
tion’s unique operational experience and risk profile. By integrating threat intelligence from router vendors
alongside external sources, this comprehensive data collection allows the Network Operator to obtain an
enhanced and holistic view of the risk posture across its entire infrastructure topology.

The CASTOR Risk Assessment Engine performs an internal analysis of the router specifications provided
against the current threat landscape. This analysis involves five critical steps: First, threats are system-
atically analyzed per router type, considering both known vulnerabilities and potential attack surfaces
based on the device’s capabilities and deployment characteristics. Second, specific security controls are
identified for each threat, mapping protective mechanisms such as secure boot, memory protection, and
cryptographic validation to their corresponding attack vectors. Third, evidence types are mapped to each
security control based on vendor capabilities and attestation infrastructure. These evidence mappings
come pre-loaded in the Risk Assessment Engine from router vendors who specify which types of evi-
dence their devices can provide to verify correct enforcement of security controls. For example, secure
boot controls are mapped to boot measurement evidence from TPM PCR registers and signature verifi-
cation status. Fourth, risk levels are calculated for each threat by quantifying their potential impact and
likelihood of occurrence. Fifth, structured risk scenarios are generated by grouping threats according
to their required security controls, maintaining clear traceability from threats to controls to measurable
evidence types. It should be noted that this phase focuses on per-router-type risk assessment, ana-
lyzing each router type independently. The consideration of attack paths and cascading threats across
interconnected routers is addressed in subsequent phases.

These structured risk scenarios, along with the calculated risk levels per threat and evidence type map-
pings, are transmitted to the Global TAF. The RTL calculation is performed collaboratively between the
Risk Assessment Engine and the Global TAF. The Risk Assessment Engine provides the foundational risk
analysis, including threat identification, risk levels per threat (combining impact and likelihood), security
control mappings, and evidence type mappings pre-loaded from vendors. The Global TAF receives this
data and calculates the onboarding phase RTL thresholds per router type configuration for each type
of evidence. The calculation applies risk equations that consider the risk assessments from the Risk
Assessment Engine, the effectiveness of security controls, and organizational policies (such as compli-
ance requirements and risk tolerance). This collaborative approach ensures that the RTL values are both
risk-appropriate and technically achievable based on what vendors can actually provide.

Critically, the RTL values are calculated per type of evidence, rather than per abstract security property,
which is in agreement with the approach to the atomic trust proposition described in Chapter 4. The
Trust Assessment Framework operates on atomic trust propositions, the most granular and measurable
trust statements possible, which are directly derived from specific evidence types. For example, a boot-

CASTOR D2.1 Public Page 77 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

time malware threat with high impact and medium likelihood may result in an RTL requirement of 0.85 for
boot measurement evidence and 0.77 for signature verification evidence. This evidence-centric approach
ensures that trust requirements remain tied to measurable, collectible data that can be verified through
attestation during runtime operations. By expressing requirements at the atomic proposition level rather
than abstract security properties, the system establishes clear, verifiable trust baselines for each router
type. As the system progresses to Phase 2 with more complex path profile requirements, these atomic
propositions can be composed into higher-level trust assessments, though the methodology for deriving
RTL values for such composite propositions remains an area for future exploration.

Following RTL calculation, the Facility Layer encodes the Trust Policies by merging information from mul-
tiple sources: the RTL thresholds calculated by the Global TAF, the evidence types to be collected during
runtime as specified by the Security Administrator and Risk Assessment Engine, and the Trust Models
that guide TAF calculations. The Facility Layer constructs comprehensive Trust Policy documents for
each router type, specifying RTL thresholds per evidence type, required attestation frequencies, and op-
erational parameters. Trust Policies for the Global TAF are configured directly by the Facility Layer, while
Trust Policies for Local TAF Agents are recorded on the CASTOR DLT infrastructure, creating an im-
mutable and auditable record of onboarding requirements. The distributed ledger prevents unauthorized
modifications and provides a tamper-proof audit trail for regulatory compliance and multi-party verifica-
tion.

As part of the onboarding process described in Section 6.2.8, the Trust Policies are then distributed
through the CASTOR DLT to configure TNDEs within the Infrastructure Layer and Network Operators,
providing them with actionable specifications for deployment. These policies provide them with action-
able specifications for deployment, including evidence types that must be collected from routers during
runtime (such as boot measurements, signature verification status, or memory protection logs), quality
thresholds that must be maintained for each evidence type (expressed as confidence levels), and collec-
tion frequencies for continuous attestation. This transforms abstract security requirements into concrete
and measurable operational procedures that will be enforced when routers are deployed and begin oper-
ational trust assessment.

Although the sequence appears linear, the Risk Assessment process exhibits dynamic characteristics that
enable continuous adaptation to changing conditions. Assessment can be triggered by various events be-
yond initial deployment, including firmware updates to existing router types, discovery of zero-day vulner-
abilities affecting deployed systems, application of additional security controls, changes in organizational
risk policies, or fundamental shifts in the threat landscape. This dynamic capability ensures that RTL
calculations remain current and relevant throughout the entire router lifecycle, supporting the zero-trust
principle of continuous verification rather than static trust assumptions.

Phase 1 establishes the essential foundation for reliable network operations by creating standardized,
evidence-based trust baselines that are independent of specific considerations of the network topology.
These baselines serve as the building blocks for more complex topology-aware analysis in subsequent
phases, ensuring that individual device trust levels are clearly defined before analyzing how devices
interact within network topologies.

CASTOR D2.1 Public Page 78 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Network Operator Risk Assessment
Engine Global TAF CASTOR DLT

Define assets per router type

Upload vulnerabilities/threats
per type

1. Analyze threats per router type
2. Identify security controls per threat
3. Map evidence types per control
4. Calculate risk levels per threat
5. Generate risk scenarios

Send risk scenarios, risk levels
and evindence mappings

Store Trust Policies
for Local TAF agents

Router type RTL requirements established

Calculate on-boarding
phase RTL per router type configuration

Facility Layer

Send RTL thresholds

Infrastructure
Layer

Merge RTL +
evidence types +
Trust Models

Configure Global TAF Trust Policies

Distribute Trust
Policies to configure

TNDEs

Phase 1: Router Type On-boarding & Evidence-Based RTL Calculation

Figure 6.11: Phase 1: CASTOR router type onboarding & RTL Calculation

6.2.4.2 Topology Integration & Cascading Attack Analysis

Phase 2, as depicted in Figure 6.12, extends the individual router risk assessments from Phase 1 to a
comprehensive topology-aware risk analysis that considers cascading attack scenarios and inter-router
dependencies. This phase transforms static device-level risk calculations into dynamic, context-aware risk
assessments that reflect the real-world operational environment where routers function as interconnected
components of a larger network infrastructure.

Phase 2 assumes that service requirements have been translated into technical parameters and asso-
ciated with appropriate path profiles from the Path Profile Catalogue, as described in the preparedness
phase (Section 6.1.1). These path profiles define the trust and network constraints that must be met for
different service levels.

The Network Operator provides intended topology information (via Security Admin), while the Facility
Layer provides actual topology data that describe the operational network infrastructure where services
will be deployed. This topology data encompasses the complete network hierarchy, including core routers
in primary data centers, aggregation routers at distribution points, and edge routers at customer access
locations. The description of the topology includes information about physical connectivity, bandwidth
capacities, redundancy configurations, and geographic distribution of network elements.

The CASTOR Risk Assessment Engine performs sophisticated cascading attack analysis using the pro-
vided topology information to identify potential failure propagation paths and attack amplification scenar-
ios (this step is omitted in the high-level description in Figure 6.2 for ease of readability). This analysis
goes beyond individual device vulnerabilities to examine how compromise or failure of one network ele-
ment could impact other connected devices and, ultimately, the services they support. The engine models
various attack scenarios including BGP hijacking attacks that could redirect traffic through compromised
nodes, physical infrastructure attacks that could isolate critical network segments, and coordinated at-
tacks targeting multiple network elements simultaneously.

Through this cascading analysis, the Risk Assessment Engine generates updated risk assessments that

CASTOR D2.1 Public Page 79 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

account for each router’s position within the network topology and its potential impact on overall net-
work security. Routers in critical positions, such as those providing backup connectivity to hospitals or
serving as aggregation points for financial services, receive higher risk scores that reflect their elevated
importance to network operations and the cascading effects of their potential compromise. In contrast,
routers serving only residential traffic with multiple alternative paths may receive lower impact assess-
ments due to their reduced criticality and limited cascading potential. Importantly, this topology-aware
risk assessment may result in the derivation of different Trust Policies for routers with identical hardware
specifications and configurations, solely based on their position within the network topology. Two routers
of the same type may, therefore have different RTL requirements depending on whether they serve critical
infrastructure or less sensitive traffic flows.

The Global TAF receives these topology-enhanced risk assessments, which include adjusted impact
scores based on each router’s network position, and recalculates Required Trust Level thresholds for
each router position within the service path. The baseline RTL values established in Phase 1 are adjusted
upward for routers with higher impact scores due to their criticality within the network topology. Routers
in critical network positions where compromise could cause cascading failures may therefore require
significantly higher RTL thresholds compared to their Phase 1 baselines, even though the router type and
capabilities remain identical.

Following RTL recalculation by the Global TAF, the topology-adjusted RTL thresholds are transmitted to
the Facility Layer for encoding into Trust Policies. It should be noted that the actual selection of network
paths per service level involves additional considerations beyond trust requirements, including optimiza-
tion problems that balance trust constraints with network performance objectives, which are addressed
separately from the risk assessment process.

Following the transmission of topology-adjusted RTL thresholds to the Facility Layer, the flow from this
point onwards follows the same process as Phase 1. The Facility Layer encodes the corresponding Trust
Policies by merging information from multiple sources: RTL thresholds from Risk Assessment Engine
and Global TAF, evidence types to be collected during runtime as specified by the Security Administrator
and Risk Assessment Engine, and Trust Models that guide TAF calculations. Trust Policies for the Global
TAF are configured directly by the Facility Layer, while Trust Policies for Local TAF Agents are recorded
on the CASTOR DLT infrastructure. These Trust Policies specify the topology-adjusted RTL thresholds
per evidence type, required attestation frequencies, and continuous compliance monitoring procedures
that must be implemented on each router participating in the service delivery.

As described in the proactive phase (Section 6.1.3), when a new router is included in the topology, it
accesses and enforces its corresponding Trust Policy from the CASTOR DLT. The topology-aware Trust
Policies derived in Phase 2 ensure that each newly enrolled router receives RTL requirements that reflect
not only its hardware capabilities (as in Phase 1) but also its specific position within the network topology
and its potential impact on cascading attack scenarios. This integration between Phase 2’s topology-
aware risk assessment and the proactive phase’s router onboarding ensures that trust requirements
remain contextually appropriate throughout the network’s operational lifecycle.

The topology analysis reveals how individual router compromise can have far-reaching consequences
beyond the immediately affected device. For instance, compromise of a core router may impact hundreds
of edge devices and thousands of customers, while failure of an edge router in a medical district could
affect life-critical communication systems. This understanding of cascading impacts demonstrates why
Phase 2’s topology-aware approach is essential for realistic security planning, directly influencing the
business and operational decisions that follow.

Like Phase 1, the topology-aware analysis exhibits dynamic characteristics that enable adaptation to
changing network conditions. Topology modifications, service demand changes, and evolving threat
landscapes can trigger reassessment of cascading attack scenarios and corresponding updates to ser-
vice availability and RTL requirements. This continuous adaptation ensures that risk assessments remain
accurate and relevant as the network infrastructure evolves to meet changing operational demands.

CASTOR D2.1 Public Page 80 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Facility LayerCASTOR DLT Risk Assessment
Engine

Global TAF Network Operator

Cascading attack
analysis per

router type configuration
 and position

Phase 2: Topology-Aware Risk Assessment

Topology-aware RTL requirements established

Provide intented topology

Provide actual topology

Topology-enhanced
risk assessments

Configure Global TAF
 Trust Policies

Store Trust Policies
for Local TAF agents

Distribute Trust Policies
to configure TNDEs

Calculate topology-adjusted
RTL per router position

and configuration

Send topology-adjusted
RTL thresholds

Merge RTL
+ evidence types
+ Trust Models

Figure 6.12: Phase 2: Topology Integration & Cascading Attack Analysis

6.2.5 Global and Local Trust Assessment

Overall, the Trust Assessment Framework (TAF) evaluates the trustworthiness across the network topol-
ogy. It is located on the Orchestration layer (i.e., Global TAF) and on each edge network elements (i.g.,
Local TAF Agent). The overall TAF concepts span across the lifecycle of a router, instantiated either as a
virtualized function on top of a commodity server (i.e., vRouter) or as a typical router hardware equipment.
Based on the identified phases in the overall CASTOR framework (see 6.1), the TAF-related phases can
be characterized as the following:

• TAF Design phase: As part of the preparedness phase, the network operator identifies the path
profiles that will be offered by the underlying infrastructure. This phase includes the specification of
all network- and trust-related characteristics that each path profile is offering. Trust characteristics
can be expressed in the form of requirements that the underlying router elements must adhere to
both during its onboarding phase but also throughout its operational phase.

• Router onboarding phase: This phase captures the process that a router must follow in order
to enrol in the overall topology. This onboarding process involves the execution of an initial trust
assessment task that can evaluate whether the router meets the minimum (integrity) guarantees
posed by the network operator of this infrastructure. Part of the onboarding process is also the

CASTOR D2.1 Public Page 81 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

establishment of the interactions with the neighbouring routers to ensure the continuous monitoring
and assessing of trustworthiness across the topology.

• Runtime phase: This phase characterizes the trust assessment operations that need to be running
when serving user workloads on top of the routers. With these policies, the control plane (i.e., via
the CASTOR Facility Layer) is able to have an up-to-date view of the network and trust properties
of all the routers in the underlying network segments.

6.2.5.1 TAF Design Phase

The definition of the trust-related guarantees of a path profile is expressed in the form of constraints
defined over one or more trust propositions. These constraints - expressed in the form of Required Trust
Levels (RTL) - may characterize the routers, the links and/or the overall path that will be selected once a
path profile is selected to be deployed.

Depending on the intrinsic characteristics and capabilities of each router and its identified risk level, it is
possible that there may be different RTL constraints that different types of routers may satisfy in order to
serve a common trust guarantee for a trust property. This is intrinsically linked with the risk posture of each
type of router to be employed in the underlying infrastructure as well as the (residual) risk that a network
operator is willing to accept in order for the entire infrastructure to operate. Consequently, a network
operator may require different number and type of evidence from routers with different characteristics.

That being said, part of the specification of the offered path profile catalogue involves the identification of
all the trust-related information that will enable the overall Trust Assessment Framework to establish and
maintain the trust characterization of the entire infrastructure layer.

The enforcement of a Trust Policy in a TAF agent allows the configuration of the continuous monitoring of
the trust guarantees that the underlying infrastructure satisfies during the different phases of the CASTOR
framework. There are different Trust Policies per type of router and per phase (e.g., onboarding of a router,
runtime phase where a router servers one or more path profiles).

Once the Trust Policies are specified expressing both the minimum requirements for a router to enrol the
topology and the guarantees that each path profile shall offer, it is possible to instantiate the Global TAF
running in the control plane (i.e., in the orchestration layer). This involves the enforcement of all the Trust
Policies designed for the Global TAF.

In the Global TAF, we consider target trust propositions on routers, links, and paths. This allows the
identification of the trust profile that each trust object has during runtime (i.e., each entity in the topology
is attributed with a network and trust profile; they are used for the optimization process). The set of trust
propositions may evolve over time as new routers are enrolled in the topology (or are detached from
the topology). Similarly, the decomposition of target trust propositions may be different over time as the
number of routers (and thus associated trust propositions) fluctuates.

In our case, we examine the Subjective Logic Trust Network as a trust model representation to capture
all dynamic trust relationships and their trust opinions during runtime. When a router is enrolled in the
topology, the instantiated trust models are empty. Nevertheless, as more routers are onboarded, the
corresponding trust relationships are introduced in the trust model and the respective trust opinions are
formed and maintained throughout the router lifecycle.

As part of the design phase, before the provision of the infrastructure layer with the CASTOR enablers,
the Operator is responsible for specifying the requirements for candidate network elements - e.g., routers.
This involves not only the secure onboarding requirements, but also the runtime guarantees that the
network elements need to exhibit in order to be considered as part of the envisioned path profiles to be
offered. Figure 6.13 captures the process that is followed in order to to derive the necessary policies
to be enforced by the candidate network elements. As shown in the figure, the Operator provisions the

CASTOR D2.1 Public Page 82 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

requirements that the routers need to demonstrate in a secure and verifiable manner in order to either
enrol the overall infrastructure topology, or satisfy the characteristics of a path profile. Different types
of network elements may be associated with different inherent risks. This is intrinsically linked with the
Required Trust Level (RTL) values that need to be attained by network elements in order to satisfy the
specified requirements. The derived RTL values, along with the trust model representation and the types
of evidence that need to be provided by the candidate network elements comprise the Trust Policies that
need to be reflected in the CASTOR DLT. Apart from auditability purposes, this allows authorized network
elements to listen for new updates in specific Trust Policies in order to enforce them locally and provide
the necessary information to the orchestrator (see Section 6.2.5.3). At the same time, this process allows
also the instantiation of the necessary trust models in the Global TAF.

CASTOR DLTFacility Layer

Store
onboarding
trust policies

Store
path profile

trust policies

Risk Assessment
Engine

Provide offered path profile catalogue
(incl. network and trust requirements)

Global TAF

Network
operator

Request for RTLs
per target property
per type of router

Provide onboarding (trust)
requirements for routers

Path Profile
Catalogue Engine

Instantiate offered path profiles

Configure trust policies per path profile
(target trust propositions either per link or per path)

Figure 6.13: CASTOR TAF design phase

6.2.5.2 Deployment Phase

As a first step we consider the phase where a new router introduced in the managed infrastructure
layer. This new element can be either spawned as a virtualized function by the network orchestrator.
Alternatively, we also consider the enrolment process of actual router hardware. In either case, we
envision that all the CASTOR artifacts are available as processes running in tandem with the router
functionality.

The first time a router tries to enrol an existing network segment, a Setup Request is sent by the Orches-
trator to the Local TAF Agent (Figure 6.14). The goal of the Setup Request is to set up the necessary
items for the TAF to start the trustworthiness assessment for the application. The Setup Request contains
the trust model ID, which allows the TAF to either locate a pre-stored static trust model or to send a Trust
Model Template Subscription Request to the CASTOR DLT, where the path profile-specific templates are
stored. A query to get the latest trust model template is automatically sent along with the Subscription
Request. As a result of the query, a Trust Model Template is sent by the CASTOR DLT to the Local TAF
agent. The CASTOR DLT has also registered the subscription request and will inform the router of any
changes to the template during the Runtime Phase. Finally, the Local TAF agent sends an Trust Policy
Subscription Request along with a query for the latest Trust Policy to the CASTOR DLT. Similarly, to the
Trust Model Template Request, as a result of the query, the current Trust Policy is sent to the TAF agent.

CASTOR D2.1 Public Page 83 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

The CASTOR DLT also registers the Trust Policy Subscription Request and will notify the router during the
Runtime Phase if the Trust Policy has changed. The Trust Policy contains the Required Trustworthiness
Level (RTL) for a specific path profile, which will be used during runtime to compare against the Actual
Trustworthiness Level (ATL).

When the Local TAF Agent of a router is launched as part of the onboarding phase of a router, it connects
to the CASTOR DLT to collect a Trust Policy to carry out its initial trust assessment process. Specifi-
cally, this refers to the onboarding Trust Policy that is associated with the specific characteristics of that
particular router (e.g., type of hardware/firmware, software stack, applied security controls).

As part of the onboarding Trust Policy, we want to evaluate that the router is able to provide the necessary
trustworthiness guarantees with respect to its integrity. This is our only target trust proposition that each
router should satisfy in order to enrol the topology. Of course, as part of the enforced Trust Policy, the
Local TAF agent receives the decomposition of the target trust proposition into atomic trust propositions.
These atomic trust propositions can be measured by the Local TAF agent through the available Trust
Sources that are supported by the router. Hence, the resulted trust opinions characterize functional
trust relationships between the Local TAF agent and the atomic trust propositions. In principle, the
specification of the atomic trust propositions is intrinsically linked to the available evidence that
we can collect and the threat model that we take into consideration.

The Local TAF agent uses its own Trust Sources and form trust opinions about its atomic trust proposi-
tions. The in-device architecture is considered to be a singe-agent system model. This simplifies the trust
model that needs to be maintained in the Local TAF agent. Specifically, this means that the trust model of
the Local TAF agent is a simple key-value database that keeps track of the quantified trust opinion over
the trust relationships between the analyst node (i.e., the Local TAF agent) and the atomic trust propo-
sitions. Ideally, each trust opinion is mapped to a single type of evidence collected from a single Trust
Source (i.e., we should avoid duplication in the available evidence for a specific trust proposition). The
quantification function that maps the available evidence to a trust opinion is provided in the Trust Policy.
Nevertheless, it may be the case that multiple evidence refer to the same atomic trust proposition (e.g.,
the runtime integrity of the software stack of a router may stem from evidence coming from the Attestation
and FSM sources). In such cases, the Trust Policy should provide the quantification function to aggregate
the evidence and derive the trust opinion for that particular atomic trust proposition.

CASTOR D2.1 Public Page 84 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

CASTOR DLT

Subscribe for trust policies based on the router characteristics (upon successful onboarding)

Local
TAF agent

Calculate ATL for
device-level trust proposition

Derive trust decision
based on RTL

Configure reporting
to DLT based

on trust decision

Configure trust model

TNDIFacility Layer Telemetry API Rest of TNDE

Configure and
Collect traces from
router behaviour
as per trust policy

Global TAF

Subscribe for trust reports on trust
propositions for the Topology Graph

Calculate ATL for
target trust proposition

(per device)

Update Topology Graph
with trust-related attributes

Share trust report (trust decision); enrol router in the topology

Share device-level ATLs

Update device-level
trust opinions Collect traces from

router behaviour
as per trust policy

Quantify trust opinions
for device-level

atomic trust propositions

Derive trust decision
for device based on RTL

Share trustworthiness evidence
through dedicated TNDI-SP channels

Receive onboarding trust policy

Quantify trust opinions for
atomic trust propositions

Trust Network Device Extensions
(TNDE)

Figure 6.14: CASTOR TAF router deployment phase

6.2.5.3 Runtime Phase

From a Local TAF agent’s perspective, there is no major difference in the sequence of actions between
the onboarding and the runtime phase; only the Trust Policy changes to provide sufficient trust guarantees
(i.e., beyond integrity) for each one of the path profiles. This is also reflected in Figure 6.15, where the
first half of the diagram is capturing similar operations on the Local TAF agent in Figure 6.14.

As mentioned in the introduction, the main purpose of the Global TAF is to continuously assess the
trustworthiness of the entire infrastructure layer and, thus, enable the selection of optimal paths for the
offered path profiles that satisfy the requested application workloads. From the perspective of the global
Trust Policy specification, this gets mainly reflected to the identification of the target trust propositions that
map to the offered trust guarantees per path profile. As already highlighted, this guarantees may be node-
, link- or path- centric. Hence, the Global TAF should be capable of characterizing the trustworthiness of
the underlying topology graph for each one of the offered trust properties. This attribution of nodes, links
and paths in the topology unlocks the optimal selection of paths that need to be established to serve the
application workloads with the agreed network (SLA) and trust (SSLA) guarantees.

Overall, there are several critical processes that are involved in the trustworthiness assessment during
the router’s runtime phase. The established Trust Policy contains parameters which indicate if the ATL
should only be sent once (synchronised TAR), sent periodically (periodic TAR), or sent whenever the ATL
changes (event-based TAR). A periodic TAR could be helpful in situations where the trustworthiness of
the trust object changes frequently because new evidence is constantly arriving.

CASTOR D2.1 Public Page 85 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Based on the trust model (template), the TAF agent decides which evidence should be collected from
the router environment. The Trustworthiness Claims provide guarantees on specific trust propositions -
e.g., that the hardware and software of the router are in a correct configuration state. In fact, the TAF
can also request evidence about the software stack from the TNDE, which then provides the Attestation
Evidence to the TAF agent. Finally, the TAF can also request results from the FSM source which may
detect abnormal behaviour in one of the device-level state diagrams that capture the different router
functionalities as dictated by the trust policy.

Once the TAF collects all the evidence needed, it can perform a trustworthiness assessment on the
relevant data and produce a set of ATLs for the target trust propositions. The ATLs are then either
forwarded to the orchestrator that sent the TAR or compared to the RTLs to produce a set of Trust
Decisions to be sent to the CASTOR DLT or its neighbouring routers.

In general the Global TAF should be able to cope with a multitude of trust propositions referring to various
trust properties. First and foremost, as shown in the second half of Figure 6.15, the Global TAF receives
and quantifies an ATL value for atomic trust propositions. In a second stage, it may use logical SL
operators to derive the target (composite) trust propositions that best characterize the requirements for
the offered path profiles.

A trust model template and trust policies update process can also occur if the TAF is notified by the
CASTOR DLT that there have been changes. In this case, the TAF queries the CASTOR DLT for the
updated version of the template and the policies, which then forwards the updates to the TAF.

Share trust-related
telemetry data (ATLs)

CASTOR DLT Facility Layer

Receive path profile trust policies

Update Topology Graph
with trust-related attributes

Local
TAF agent

Calculate ATL for
device-level trust proposition

Quantify trust opinions for
atomic trust propositions

Update
device-level

trust opinions

Compute trust opinions
for device- and link-level

atomic trust opinions

Calculate ATL for
target trust proposition

(per device, link and/or path)

Telemetry API Rest of TNDE

Configure trust sources

Collect traces from
router behaviour
as per trust policy

Record raw traces to the DLT through an established TNDI-SP (based on trust decision)(Optional) Evidence coming
from neighbouring routers
(e.g., Stamped Passports)

RouterGlobal TAF

Derive trust decision
based on RTL

Derive trust decision
based on RTL

Configure reporting
to DLT based

on trust decision
Collect traces from
router behaviour
as per trust policy

Share trustworthiness evidence
(either for this or neighbouring routers)

Trust Network Device Extensions (TNDE)

Figure 6.15: CASTOR TAF runtime phase

6.2.6 On-board Finite State Machine Analyser

Evaluating and assessing the trust associated to a target is a complex multidimensional problem that
can be facilitated the more sources of trust evidence are available to be analysed to enable the most
accurate trust evaluation possible. For example, the Attestation Source is capable of assessing the static

CASTOR D2.1 Public Page 86 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

information of the router by analysing information related to its current configuration and memory usage,
but has limited visibility and struggles in identifying and assessing the runtime dynamic aspects of the
router during its operational phase. Furthermore, if we extend the scenario by including the requirements
provided by the current threat model of interest for the router, the dynamic information of the router
gain even more importance, requiring specific models aimed to analyse its behaviour and identifying the
potential threats currently affecting its functionalities. It is also important to consider the computational
restrictions tied to the router and to limit the impact that the security functionalities introduced on the
platform have on the normal operational services of the router itself, which is why we opted towards
a runtime lightweight model to attest the dynamic behaviour of the router represented by a finite state
machine (FSM). The FSM analyser - or FSM source to denote its functionality of a Trust Source in the
overall CASTOR Trust Assessment Framework - is capable of generating Trust Sources for the trust
evaluation process, analysing runtime behavioural information of the router to be shared to the Local
TAF Agent enabling it to perform a more complete and holistic evaluation of the router. As described in
[72], the FSM will learn an FSM based on the traces collected at runtime and minimises the model to
its minimum number of states without losing accuracy on the information which represents. Clearly, the
process is highly dependent on the data fed to the learning process, which vary depending on the threat
model landscape considered for the analysis and the nominal behaviour, or behaviours, of the router
under study that are required to be represented by the FSM model. A preliminary study of the nominal
router behaviours will be performed to identify which set of information are required to be collected at
runtime to best represent them through the FSM model.

By relying on specific runtime information collected by the tracer, the FSM analyser performs a runtime
evaluation of its ad-hoc router model and provides its evaluation in the form of behavioural evidence to the
TAF agent. To configure the FSM analyser and the tracer, the TN-DSM will share a trust policy containing,
but not limited to, the (i) information related to what kind of tracing data the tracer needs to collect to enable
the the FSM analyser to perform its runtime evaluation, and (ii) the latest router behavioural model to be
used by the FSM analyser for the evaluation and assessment of the collected runtime traces, effectively
enabling the runtime evaluation and generation of its related Trust Source. At this point, both the tracer
and the FSM analyser are assumed to be correctly configured and operational.

While the router is operating, the tracer collects and shares data that are relevant to the FSM analyser,
which then performs its runtime behavioural evaluation of the router functionalities, identifying if the be-
haviour of the router is consistent with the expected model or if there are any discrepancies. In the latter
case, the FSM analyser will generate the trust evidence related to the incident, raising an alert to the Lo-
cal TAF Agent that contains information about the type of misbehaviour detected and related details about
the runtime actions leading to the alert. Depending on the customer preferences, any kind of evidence
can be stored on the CASTOR DLT through the TNDI-SP for further future inspection.

CASTOR D2.1 Public Page 87 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 6.16: Onboard Finite State Machine analyser flow of actions

6.2.7 Optimization Engine

The Optimization Engine, as shown in Figure 6.17, in CASTOR is responsible for identifying and rec-
ommending optimal network paths between ingress and egress nodes, considering both intra- and inter-
domain topology. At the core of the Optimization Engine is a multi-objective Design Space Exploration
(DSE) algorithm operating on network-level (e.g., latency, bandwidth) and trust-level (e.g., integrity, con-
fidentiality) constraints defined by user-defined SSLAs. The Path Profile Catalogue Engine facilitates
the mapping of all SSLA objectives to path profiles. This mapping articulate domain-specific network
and trust-related requirements. The Facility Layer serves as the interface that exposes this information
to the Optimization Engine. The Topology Graph, - maintained within the Facility Layer - provides the
Optimization Engine with an up-to-date representation of the network topology.

The Optimization utilizes Quantum Annealing to efficiently navigate the large and complex design space
of potential paths. The Optimization Engine reformulates the multi-objective multi-constraint trust path
routing problem as a Quadratic Unconstrained Binary Optimization (QUBO) problem. Binary variables
within the QUBO represent inclusion of nodes and links in the solution path, optimizing the objective
function encoded as trust and performance metrics. A Quantum Annealer within the Optimization Engine
then solves the formulated QUBO problem.

6.2.7.1 Quantum-Anneal-Based Trust Path Selection

The QUBO model incorporates hard constraints, such as meeting the minimum Required Trust Levels
defined by the Global TAF, along with soft optimization goals like minimizing total latency by avoiding

CASTOR D2.1 Public Page 88 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Facility Layer

New SR Policy
and

Local Configuration
Update

Trigger upon decision to get fresh recommendations

Optimization Engine
API

Acknowledgement

QUBO Formulator Quantum
Annealer

Topology Graph
and

Path Profile Catalogue

QUBO Formulation

Trusted Path Routing
Requirements

QUBO Solution

Recommended Paths
Per Path Profile

Recommended Paths

Traffic Engineering
Policy Engine

Acknowledgement

Topology Graph
and

Path Profile Catalogue

Figure 6.17: Optimization Engine action flow

congested or degraded links. The QUBO formulator translates each constraint and objective into a term
in the QUBO formulation. The constraints (and objectives) come from the path profile requirements. The
attribution in the actual topology comes from the topology Graph maintained by the Facility Layer. The
trust-related attribution is coming from the Global TAF, while the network performance is coming through
the Telemetry API. Finally, a penalty function discourages the inclusion of untrusted or degraded links.
Subjective logic determines the quality of a path by analysing the nodes and links that form the path.

The Optimization Engine then submits the problem to a quantum annealer, which probabilistically ex-
plores the design space to identify the optimal (or near-optimal) paths. The use of Quantum Annealing
reduces the likelihood of convergence to local optima (over classical solvers), especially in large, dynamic,
constraint-heavy network environments targeted within CASTOR.

6.2.7.2 Integration with Segment Routing

The Optimization Engine assigns a unique colour for each tier in the path profile catalogue. The Opti-
mization Engine passes its optimal path recommendations to the Traffic Engineering Policy Engine. The
Traffic Engineering Policy Engine then converts the Optimization Engine output into Segmented Routing
Policies. The Path Computation Element. as part of the orchestration layer, enforces these Traffic En-
gineering policies (e.g., Segment Routing configuration) at the local level for a scalable and distributed
solution.

The optimal path defined by the Segment Routing policy may encompass one, or multiple candidate
paths for all entries in the Path Profile Catalogue that satisfy the trust-based selection criteria using
subjective logic. The paths thereby adhere to both network and trust requirements, as envisioned in
CASTOR. Candidate paths can also include fallback or backup segments that are pre-computed by the
Optimization Engine to support fast re-routing in case of a runtime violation. The Optimization thereby
supports programmable path validations and a fallback mechanism that aligns with CASTOR’s zero-touch
automation goals.

CASTOR D2.1 Public Page 89 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

6.2.7.3 Integration with Facility Layer and TAF

The Optimization Engine continuously consumes the latest insights that are collected at the Facility Layer
so as to provide fresh and timely recommendations based on the latest topology state. Specifically, the
Topology Graph information consists of network telemetry data via the Telemetry API, and trust metrics via
the Global TAF. Whenever a new service intent is received or when a topology change occurs (e.g., due to
a trust violation or a node joining/leaving), the Traffic Engineering Policy Engine triggers the Optimization
Engine to recalculate the optimal paths. The Optimization engine then provides new paths incorporating
both the latest network conditions and the current trust assessments.

6.2.8 Trustworthy Platform Attestation and TNDI Onboarding/Runtime

Before a Trust Network Device Interface (TNDI), representing, e.g., a vRouter instance or a physical
router, can participate in CASTOR’s trusted path routing, the underlying platform must first join the CAS-
TOR domain and then the TNDI must be securely onboarded into the network. This includes the CASTOR
orchestrator attesting the Trusted Network Device Extensions (TNDE) of the device platform and the sub-
sequent attestation and trustworthy configuration of the selected TNDI. In addition, the TNDI onboarding
includes the establishment of secure communication channels from the TNDI to CASTOR’s upper layer
components (e.g., Global TAF) and to the neighboring TNDIs in the network domain in order to share
attestation-related information.

In the following, we will present this platform/TNDE join phase and TNDI onboarding phase, as well as
the transition into the subsequent runtime phase. We will describe for each phase the high-level flow
of actions between the CASTOR upper layer components, the device-side components (especially the
TNDE), and the neighboring TNDIs.

6.2.8.1 Platform/TNDE Join Phase

Before TNDIs of a network device can be onboarded, the underlying platform must be added to the
CASTOR domain, i.e., join the domain. As shown in the upper part of Figure 6.18, the CASTOR Facility
Layer starts by establishing a connection to the TNDE of the network device and remotely authenticating
and attesting the platform. The TNDE forms the device-side TCB (together with the TNDE-operated
Trace Units) and executes in a HW-based TEE with platform-bound identity and attestation keys rooted in
secure hardware. The TN-DSM serves as the TNDE communication endpoint for the Facility Layer and
manages the TNDIs of a network device. After TNDE authentication and attestation, the Facility Layer
and TNDE can securely exchange metadata and configurations required to complete the join procedure.

6.2.8.2 TNDI Onboarding Phase

After the platform TNDE has joined the CASTOR domain, the orchestrator can select one of potentially
multiple TNDIs (e.g., vRouter instances) managed by the TNDE and start the onboarding process. As
shown in Figure 6.18, in the TNDI onboarding phase, the CASTOR Facility Layer establishes trust in the
TNDI via the TNDE and configures the TNDI for the runtime trust assessment required for CASTOR’s
trusted path routing. First, the Facility Layer establishes a TNDI-SP control channel via the TN-DSM
for that TNDI, which is bound to the attested session between Facility Layer and TN-DSM. The Facility
Layer then queries relevant TNDI metadata (e.g., vendor information) and measurements for the TNDI
attestation, exchanges cryptographic keys (e.g., attestation keys for runtime evidence), and configures
the TNDI with information on the CASTOR upper layers (e.g., communication endpoints), enforced by
the TN-DSM. The TN-DSM then configures the TPL Data Connector of the TNDE accordingly to retrieve
the CASTOR trust policy for the TNDI from the CASTOR DLT. The TPL Data Connector then shares the

CASTOR D2.1 Public Page 90 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

trust policy with the TN-DSM and enforces it at the Local TAF Agent. On trust policy initialization, the
Local TAF Agent configures its two Trust Sources (Attestation and FSM Source) for the runtime evidence
generation based on traces collected for the TNDI. The TN-DSM configures the Tracing Hub accordingly
to prepare the collection of configurational and behavioral runtime traces for the properties specified in
the trust policy.

After the tracing and trust assessment components have been configured, the Facility Layer asks the
TN-DSM (via the TNDI-SP control channel) to bootstrap the TNDI-SP data channels required for sharing
runtime traces, evidence, and ATLs with the CASTOR upper layer components: the Global TAF and DLT.
The TN-DSM establishes the requested data channels with the Global TAF and DLT, bound to the TNDI
via the TNDI-SP control session. Finally, the TN-DSM might push network configurations to the TNDI
to prepare it for the participation in the CASTOR topology and trusted path routing. At this step, the
TNDI might already start establishing secure network links with neighbouring TNDIs by exchanging their
attestation information (e.g., boot measurements). As the exact time this takes place might be flexible
and as it might repeat periodically, potentially enhanced with runtime evidence, we will cover this further
as part of the runtime phase. After that step, the configuration of the TNDE components and the TNDI is
complete and the TNDI is ready to enter the runtime phase.

Global TAF Facility Layer

authenticate + attest
the TNDE platform

TN-DSM

establish TNDI-SP
control channel

configure tracing layer (artifacts to trace, tracers, etc.)

attest TNDI
(e.g., vRouter VM)

configuration data

configure TNDI-SP
data channels

trust policy

config for
policy retrieval

trust policy

trust policy

trust policy

optional: set TNDI network configuration (e.g., PCE config for router)

trust policy

retrieve trust policy

establish TNDI-SP data channel

establish TNDI-SP data channel

key exchange

TNDI-SP Control Channel (long-lasting)

TNDI-SP Control Channel (long-lasting)

TPL Data
Connector Local TAF Agent Attestation

Source FSM Source Tracing HubCASTOR DLT TNDI
(e.g., vRouter)

TNDE (Trust Network Device Extensions), part of CASTOR's device-side TCB

Neighboring
TNDIs

Platform / TNDE
Join Phase

TNDI Onboarding
Phase

metadata / config

Figure 6.18: TNDE and TNDI flows during join and onboarding phases (attestation and configuration)

6.2.8.3 TNDI Runtime Phase

After a TNDI has been successfully onboarded to the CASTOR domain, the TNDI can enter the runtime
phase in which the TNDI participates in CASTOR’s trusted path routing. If not already done as part of the
final onboarding steps (cf. previous section), first, the TNDI establishes protected links with trustworthy
neighbouring TNDIs (of that CASTOR domain) in order to securely exchange network traffic. For the
secure link establishment, CASTOR builds on top of the IETF trusted path routing (TPR) proposal [27],
exchanging evidence-containing stamped passports between TNDIs. The TNDI interfaces with the TN-
DSM to craft the stamped passport, including attestation information on the TNDI platform (e.g., including

CASTOR D2.1 Public Page 91 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

boot measurements of the TNDI-associated vRouter). The TNDI then exchanges the passports with
neighboring TNDIs using broadcast-based communication and bootstraps secure links with successfully
verified neighbors (e.g., based on MACsec). The TNDIs can then securely exchange routing information
and forward packets via the secure links. The TNDIs might be configured to periodically re-exchange
passports, potentially incorporating additional runtime attestation information generated as part of the
local trust assessment process.

During the runtime phase, the tracing and trust assessment for the TNDI is active, with the TN-DSM
sharing traces, evidence, and ATLs via the TNDI-SP data channels with the CASTOR upper layer com-
ponents. That way, CASTOR can identify and enforce trusted paths based on the trust levels of the
TNDIs and their interconnecting links. To establish an ordering of trust-related information across all
TNDIs, CASTOR will explore different strategies. For instance, CASTOR could build on top of hardware-
rooted monotonic counters, or the CASTOR Facility Layer could periodically (depending on the setup)
push new time markers to the TN-DSM, e.g., in the form of CASTOR-managed IETF epoch markers [26].
When the Tracing Hub collects configurational and behavioral traces of the TNDI, it distributes them to the
Attestation and FSM Trust Sources for evidence generation (see subsection 6.2.9). The Attestation and
FSM Sources will forward the traces and generated evidence to the TN-DSM and to the Local TAF Agent.
The Local TAF Agent can then perform the ATL calculations and trust report constructions and share the
resulting ATLs and reports with the TN-DSM. The TN-DSM shares the calculated local ATLs and evidence
via the pre-established TNDI-SP data channel with the Global TAF for the global trust assessments. In
addition, the TN-DSM can publish (a subset of) the traces, evidence, and trust reports for audit purposes
at the CASTOR DLT through the respective TNDI-SP data channel. Finally, the TNDI periodically shares
network telemetry data with the CASTOR telemetry service (e.g., latency and bandwidth statistics), and
the TN-DSM can optionally share the trust reports as additional, trust-related telemetry data.

This concludes the overview of the TNDI-related flows of actions. Note that the described operations
of trustworthiness data generation and sharing, freshness renewal (time markers), and exchange of
stamped passports happens periodically or triggered by external events (e.g., a new neighboring TNDI
getting onboarded), and might slightly vary in their order of occurrence.

CASTOR D2.1 Public Page 92 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Global TAF

perform global
trust assessment

Facility Layer TN-DSM

publish trust
reports (telemetry)

stamped passport

TNDI-SP Data Channel (long-lasting)

TNDI-SP Control Channel (long-lasting)

TPL Data
Connector

ATLs, trust reports

Local TAF Agent

calculate ATL per trust
proposition and

construct trust reports

Attestation
Source

attestation evidence

FSM Source Tracing Hub

get stamped passport

CASTOR DLT TNDI
(e.g., vRouter)

monitor / trace

TNDE (Trust Network Device Extension), part of CASTOR's device-side TCB

Neighboring
TNDIs

exchange
passports

establish
secure links

exchange
routing information

traces for attestable propositions

traces for propositions
handled by FSM

FSM evidence + traces

attestation evidence + traces

FSM evidence

publish traces/evidence/trust reports for audit purposes

TNDI-SP Data Channel (long-lasting)

ATLs, evidence

new epoch marker

publish network telemetry data

Figure 6.19: TNDE and TNDI flows during the runtime phase (trust assessment and data sharing)

6.2.9 CASTOR Tracing Capabilities

The Tracing Hub on each network device is crucial to provide runtime traces for the trust assessment of
each TNDI. The Tracing Hub is part of CASTOR’s TNDE and responsible for collecting configurational
and behavioral runtime traces for each TNDI, e.g., capturing activities of the routing stack. The collected
traces form the basis for the trustworthiness evidence generation and are therefore forwarded to the
Attestation and FSM Trust Sources. The Trust Sources generate runtime evidence based on the traces
and forward the evidence to the Local TAF Agent for the ATL calculations of each TNDI. As was shown
in Figure 6.19, the traces, evidence, and ATLs are additionally forwarded to the upper layer CASTOR
components by the TN-DSM for the global trust assessment (Global TAF) and for auditing purposes (DLT).
The way the runtime traces are collected and shared with the TNDE and global CASTOR components
has a direct impact on the completeness and precision of the evidence and ATLs, the required network
bandwidth, and the latency of an incident detection, e.g., the time to react on the decrease of a TNDI’s
ATL.

In the following, we provide an overview of the tracing architecture and the tradeoffs of different modalities
for exchanging the traces and/or evidence across the CASTOR components.

CASTOR D2.1 Public Page 93 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

6.2.9.1 Multi-level tracing architecture

CASTOR envisions a flexible multi-level tracing architecture that allows for multiple Trace Units (i.e., trac-
ers) and dynamic configuration by the CASTOR operator to achieve different tracing tradeoffs (e.g., per-
formance vs. granularity). The TNDE is responsible for configuring the Tracing Hub on behalf of the
CASTOR operator based on the trust policy and configuration information provided as part of the TNDI
onboarding process (cf. subsection 6.2.8). Depending on the propositions for which traces and evidence
need to be generated, the TNDE can ask the Tracing Hub to operate an appropriate subset of Trace
Units that can collect suitable configurational and/or behavioral runtime traces from the TNDI. The Trace
Units are the TNDE-external trace mechanisms interfaced by the Tracing Hub to perform the trace col-
lection. The evidence-generating Trust Sources of the Local TAF Agent, i.e., the Attestation Source and
FSM Source, can then subscribe to the required traces that they need to process. As the TNDIs might
be based on different software and/or hardware platforms, e.g., physical or virtual routers of different
vendors, the way the different Trace Units are implemented and controlled by the Tracing Hub at run-
time might vary, and the evidence-generating Trust Sources might need to adapt to TNDI-specific traces
accordingly (e.g., loading vendor-specific FSMs). However, CASTOR uses a common data format for
encoding the traces to provide support across different Trust Sources.

For CASTOR’s multi-level tracing architecture, we plan to explore two types of Trace Units operated by
the Tracing Hub: (1) a memory-based introspection one that is isolated from the TNDIs, and (2) an
OS-level one integrated into a TNDI’s software stack (e.g., router NOS), as shown in Figure 6.20. The
two Trace Unit types provide different tradeoffs w.r.t. their tracing primitives, security, performance, and
platform integration, as summarized in Table 6.2. By considering both, we can explore which tradeoffs
are best suited to collect runtime traces required for different trustworthiness evidence of a TNDI, backed
by practical experiments.

Network Device Platform

TNDI
Router

Services

TNDE

Tracing
Hub

NOS (kernel)

Trace Unit 1
inspect TNDI

memory

Trace Unit 2
kernel level

tracing

TN-DSM

Trust
Sources traces

raw traces

tracing layerlegend:

Figure 6.20: CASTOR’s multi-level tracing architecture proposal

Trace Unit 1: Out-of-TNDI Memory Inspection The first Trace Unit that we consider is based on mem-
ory inspection and is located outside the monitored TNDI. That is, the tracer is isolated from the TNDI,
e.g., co-located with the TNDE in a TEE of a physical router or isolated from a vRouter by a hypervisor,
providing strong protection against a compromised TNDI. The Trace Unit reads from the memory address
space of a TNDI to inspect its runtime state, monitor it for changes, and extract relevant configurational
and/or behavioral information, similar to existing forensics and VM introspection approaches [96, 130].
That way, the tracer collects traces based on the live memory state and changes of a TNDI. The Trace
Unit’s ouf-of-TNDI design provides strong isolation guarantees and is non-intrusive in that it does not

CASTOR D2.1 Public Page 94 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 6.2: Comparison of the Trace Units considered for CASTOR.

Property Trace Unit 1 Trace Unit 2
Location outside TNDI (e.g., in TEE) in TNDI (e.g., in network OS)
In-TNDI Changes no yes
Primitives memory reads (vetted) memory reads,

inline tracepoints
Arbitrary Memory Access yes depends (e.g., eBPF: no)
Difficulty of Data Access mid low
Performance low–high (mid–)high
Security high low–mid
Portability mid–high low–mid

require changes within the TNDI software stack. Furthermore, by relying solely on reading and parsing a
TNDI’s memory, the tracer is easily portable to other network device platforms, TEEs, or other forms of
isolated execution environments (e.g., DMA-capable peripherals). On the downside, memory inspection
cannot perform inline behavior tracing without polling-based approaches [111] or expensive trap mech-
anisms, and it needs to deal with the semantic gap challenge, i.e., needs to manually locate and parse
data structures as it executes outside the TNDI address space.

Trace Unit 2: In-TNDI OS-level Tracer The second Trace Unit that we consider is an OS-level tracer
that uses mechanisms integrated into the TNDI software stack. Many existing network devices have
a Linux-based OS [129] and therefore support Linux tracing mechanisms (e.g., eBPF) with static (or
dynamic) inline tracepoints in the kernel. This Trace Unit provides no isolation against a full kernel-
compromise of the TNDI (i.e., arbitrary code execution), however, it complements the previous Trace
Unit with fast inline tracing capabilities for the collection of more fine-grained behavioral traces (e.g., on
system calls). In addition, it can directly access tracer-exposed kernel data structures as it operates in
the TNDI memory address space, in contrast to the previous tracer which requires additional parsing
and translation effort. However, the Trace Unit might have access permissions only to a subset of the
available kernel structures for security/stability reasons (e.g., eBPF). In addition, as this tracer requires
direct integration into the TNDI software stack, this tracer provides weaker security guarantees for the
traces, introduces new components into the TNDI (intrusive), and is less portable to other platforms. The
tracing mechanisms need to be enabled for the specific vendor TNDI platform (e.g., router NOS), even if
it is based on Linux.

By focussing on the secure out-of-TNDI tracer as the primary secure tracing source (unit) and enabling
the more fine-grained but less secure in-TNDI Trace Unit on demand, CASTOR’s multi-level tracing archi-
tecture provides the operator with strong flexibility for effective runtime tracing and trust assessments.

6.2.9.2 Sharing of Traces and Evidence

The traces collected by the Tracing Hub are shared with the Trust Sources to generate evidence for the
trust assessment and can be shared (together with evidence/ATLs) with upper-layer CASTOR compo-
nents through the TNDI-SP data channels, as previously shown in Figure 6.19. The Trust Sources can
subscribe to the type of traces they require to generate the evidence expected by the Local TAF Agent.
What types of traces or evidence the TN-DSM shares with the CASTOR upper layer components, e.g.,
the Global TAF and CASTOR DLT, is configured by the CASTOR orchestrator via the TNDI-SP control
channel as part of the TNDI onboarding process (cf. subsection 6.2.8). While not the main focus, note
that the TN-DSM can optionally share trust-related telemetry information with the upper layer services via
CASTOR’s Telemetry API (e.g., telemetry of the Local TAF Agent).

CASTOR D2.1 Public Page 95 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Traces can be passed to the Trust Sources and upper layer components in different ways, resulting in
different tradeoffs. We therefore plan to experimentally explore some of the following strategies and
asses which are best suited in the context of CASTOR’s trusted path routing, considering, e.g., the
resulting detection latency (of ATL changes), memory buffering, and network overhead.

Continuous vs. Operation-based The traces can be continuously passed to the Trust Sources, result-
ing in a minimal latency for the evidence generation and no need for buffering of traces. However, this
implies that the traces might not capture a full operation, e.g., only a subset of the behavior shown during
a routing table update, requiring a stateful operation of the Trust Sources (e.g., the FSMs). Alternatively,
the Tracing Hub could be aware of the start and end of evidence-relevant activities and share only batches
of traces that capture a full operation. That way, the Trust Sources could operate in a stateless way, re-
ceiving sets of full traces based on which evidence is generated. However, this strategy assumes that
the Tracing Hub can guarantee a clear separation of traces for different evidence-relevant operations. In
addition, this strategy might increase the detection latency as the delivery of some traces is delayed.

Sharing on ATL Change Another sharing modality decides if all generated traces and evidence should
be shared, or only those that indicate a change in the TNDI’s trust level. Such a policy could be im-
plemented either at the Tracing Hub, Trust Source, or Local TAF Agent level, depending on when it is
possible to identify a potential change in the ATL. For more complex behavioral traces/evidence, this
might be difficult to achieve without an expressive state model as provided by the FSM Source. For more
static, configurational traces/evidence, it might be possible to keep a minimal state at the Tracing Hub or
Attestation Source level to detect changes that require sharing with the Local TAF Agent and CASTOR
upper layer components. The advantage of such a change-based sharing strategy would be a decrease
in network bandwidth overhead for remote sharing and a potential decrease in processing overhead on
the local devices.

Remote: Push vs. Pull For the remote sharing with the upper layer CASTOR components via the
TNDI-SP data channels (cf. subsection 6.2.8), CASTOR can follow a push- or pull-based approach.
The push-based approach will enable a lower detection latency as new traces and evidence are shared
immediately. However, the network will also face constant bandwidth overhead and the CASTOR upper
layers might get overloaded when the network includes a high number of TNDIs, requiring buffering of
traces and evidence at the upper layer components. A pull-based approach sacrifices lower detection
latency for more traffic control by the upper layer. However, it implies the need for buffering of traces and
evidence at the device-sides, potentially requiring a limited time window for which traces/evidence can be
provided on resource-constrained devices.

Remote: Sharing Traces vs. Evidence For the remote sharing with the upper layer CASTOR compo-
nents, sharing the (raw) traces generated by the tracing layer might introduce a non-negligible network
bandwidth overhead. The size of traces generated by fine-grained behavioral tracing can be high, such
that for some propositions it might be better to share only the evidence generated by the Trust Sources.

6.2.10 Composite Attestation

In CASTOR project, trust establishment is achieved through a composable attestation mechanism. Within
a given network segment, each router possesses the capability to autonomously generate a cryptograph-
ically signed claim reflecting its current trust level and integrity status. These individual claims, originating
from distinct routers along a potential path, are systematically collected and assembled to form a com-
posite proof representing a trustworthy path. The orchestrator, acting as a centralized trust authority,

CASTOR D2.1 Public Page 96 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

node 1 node 2 node n......

......
......

verify and generate
a new proof

proof of evidence
associated with node 1

the proof

the proof
verify

Figure 6.21: The workflow of composite attestation

can then perform a collective attestation of the entire segment of routers. This process yields verifiable
evidence attesting to the overall integrity of the constructed path. Furthermore, the trust model extends
beyond a single segment; the attested claims are inherently designed to be verifiable by and linked to
those from neighbouring segments. Consequently, routers at segment boundaries may selectively verify
different subsets of a combined claim set, a process governed by dynamically defined attestation policies
that dictate the required scope and depth of verification.

From a cryptographic perspective, the primary objective is to engineer a secure system for trusted path
routing across a collection of trustworthy network devices, such as virtual routers. The conceptual model,
illustrated in Figure 6.21, assigns each router the role of a signer. Each signer generates a digital sig-
nature over its trust claim, serving as unforgeable proof of its trust level. A critical feature of the system
is the ability to aggregate these individual signatures into a compact composite proof. This aggregation
allows any verifying entity—be it another router or the orchestrator—to efficiently verify the entire set of
claims or, importantly, any arbitrary subset thereof, depending on the verification context.

The process of establishing a trusted path routing can be formalized as follows. We assume a network
comprising n nodes, each capable of acting as a prover/verifier. The protocol proceeds sequentially along
the path: an initiating prover node 1 sends its proof p1 to the next node 2. Upon receipt, node 2 first verifies
the validity of p1. If and only if the verification is successful, node 2 generates a new, cumulative proof
p2. This proof p2 is computed based on his/her own trust evidence and the previously verified proof p1,
effectively chaining the trust assertions. This iterative step—verification followed by proof generation—is
repeated hop-by-hop until the path is established at the final node pn. Analyzing this interactive protocol
reveals several fundamental cryptographic requirements that must be satisfied to ensure its security and
practicality as follows:

1. There are multiple provers/verifiers.

2. Multiple proofs can be aggregated/combined one by one in sequence.

3. Any verifier can verify part of the aggregated/combined proofs.

4. Revocation of rogue devices is needed.

We call this kind of proof and verification process composite attestation. To achieve composite attestation,
we need a basic digital signature and a method to achieve aggregation. Here, we give generic definitions
of a basic digital signature and an aggregatable signature:

Definition of a basic digital signature. A basic digital signature is denoted as SIG = (KeyGen,Sign,
Verify), in which details of all algorithms are described as follows:

CASTOR D2.1 Public Page 97 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

node 1 node 2 node n......

node 1' node n'

node 0

......

......

root of trust

send proofs to upper layer

verify proofs and send new
proofs to upper layer

verify proofs and send new
proofs to upper layer

Figure 6.22: The structure of layered attestation

• KeyGen: This key generation algorithm takes the security parameter λ as input and outputs a pair
of secret/public key, i.e., (sk, pk).

• Sign. Given a secret key sk = x and a message to be signed M ∈ {0, 1}∗, this signing algorithm
generates a signature, σ.

• Verify: Given a public key pk, a message M ∈ {0, 1}∗, and a signature σ, this verification algo-
rithm verifies whether the signature σ is valid or not. If yes, output ‘1’ for accepting this signature;
otherwise, output ‘0’ for rejecting this signature.

Based on this basic signature definition, as mentioned in subsection 2.2.7, to achieve composite at-
testation, we can consider about ordered multi-signature/layered signature attestation. The structure of
multi-signature is more or less the same as that shown in 6.21. While the layered attestation is different.
As shown in 6.22, there are multiple layers. Every lower layer can generate aggregated proofs, which will
be sent to upper layer. The upper layer will verify the proofs and generate new aggregated proofs. This
process will be repeated until the top layer. The top node meets root of trust. In summary, the aggre-
gated signature (ordered multi-signature/layered attestation) aSIG = (aKeyGen,Sign, aSign, aVerify) is
described as follows:

• aKeyGen: each signer i makes use of the KeyGen algorithm to generate a secret/public key pair,
i.e., (ski, pki).

• Sign: Given a secret key ski and a message to be signed mi ∈ {0, 1}∗, this aSign algorithm
generates a signature σi for the signer i.

• aSign: This algorithm is used to aggregate multiple signatures by one entity. Given multiple sig-
natures σi associated with multiple distinct messages mi, i ∈ [n − 1], an entity can generate an
aggregated signature σ =

∏n−1
i=1 σi by aggregating all signatures σi, i ∈ [n− 1].

• aVerify: Given all public keys pki, messages mi ∈ {0, 1}∗, i ∈ [n], and an aggregated signature σ,
this aVerify verifies whether the aggregated signature σ is valid or not. If yes, output ‘1’ for accepting
this signature; otherwise, output ‘0’ for rejecting this signature.

Same as the basic digital signature, the aggregated signature is captured by correctness and unforgeabil-
ity. Correctness means a valid signature generated by a legitimate secret key can pass the verification
algorithm Verify and a valid aggregated signature can pass the aggregated verification algorithm aVerify;

CASTOR D2.1 Public Page 98 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Orchestrator A Orchestrator B Orchestrator C
(any entity)

execute
ORE.Encrypt

nodes in domain A nodes in domain B

Send ATLs Send ATLs execute
ORE.Encrypt

Ciphertexts based on ATLs and lowest ATLvalue in domain A

Ciphertexts based on ATLs and lowest ATLvalue in domain B

execute
ORE.Compare

Figure 6.23: The workflow of ORE in CASTOR for different domains

Unforgeability means an adversary, who does not have a valid secret key, cannot forge an aggregated
signature to pass the verification algorithm aVerify.

In the CASTOR framework, trust establishment is fundamentally achieved through a composite attesta-
tion mechanism. The pivotal challenge we address is the extension of trust evaluations from the granular
level of individual network nodes to the holistic level of entire communication paths. This is accomplished
by cryptographically combining the trust opinions and integrity proofs of every node along a given path
into a single, verifiable claim. By adopting this sequential attestation model, CASTOR not only fulfills its
functional requirement of constructing trusted paths but also rigorously enforces critical security proper-
ties. Specifically, the mechanism guarantees unforgeability, ensuring that no malicious node can falsify
the collective attestation or impersonate a legitimate participant. Furthermore, it provides linkability, cre-
ating an auditable cryptographic chain of custody, which is a prerequisite for effective revocation. This
enables the system to precisely identify and subsequently revoke any compromised node that attempts
to undermine the path’s integrity, thereby preserving the overall security of the routing infrastructure.

6.2.11 Crypto Structures & Building Blocks

Motivation of Order-Revealing Encryption. Following the same scenario in the composite attestation
mechanism, during communication, there are two cases. In one domain, we need to ensure the ATL
of the routers in a path is above a certain value (minimum ATL). Moreover, in cross-domain scenarios,
different orchestrators need to exchange information, the order of ATLs without revealing the real values
of ATLs. Based on this scenario, we need to compare different ATLs without revealing the information.

From a cryptographic aspect, we need a primitive that can compare the order of private information
but without revealing the private information. To solve this issue, we can make use of Order-Revealing
Encryption (ORE), which can get the order of plaintexts by comparing associated ciphertexts without
revealing the plaintexts.

In 2014, Boneh et al. [31] proposed the first Order-Revealing Encryption (ORE) by making use of multi-
input functional encryption without obfuscation. ORE is motivated by the problem of answering queries
on a remote encrypted database [15, 29]. Consider a remote database holding encrypted pairs (name,
salary). The data owner wishes to retrieve all records with a salary greater than t. If salaries are encrypted
using an ORE then the database can sort all records on is own from lowest salary to highest. This sorting
can be done even when records are inserted sequentially into the database (perhaps by multiple users
who share the secret encryption key) and requires no interaction with the data owner(s). To issue the
range query the data owner sends the encryption of t under the ORE key. In response, the database
first uses binary search on the encrypted salaries to locate the smallest encrypted record R with a salary
greater than t and then simply sends all records to the “right” of R back to the user. Thus, for a database

CASTOR D2.1 Public Page 99 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

of n records, the database’s work is O(log n) and requires only one round of interaction with the client,
as in the case of a cleartext database. Security of the ORE ensures that the database learns nothing
beyond the relative ordering of records and queries.

Workflow of Order-Revealing Encryption. An ORE scheme [43] is denoted by Π = (ORE.Setup,
ORE.Encrypt,ORE.Compare) defined over a well-ordered domain D:

• ORE.Setup(1λ) → sk: On input a security parameter λ, the setup algorithm ORE.Setup outputs a
secret key sk.

• ORE.Encrypt(sk,m) → ct: On input the secret key sk and a message m ∈ D, the encrypt algorithm
ORE.Encrypt outputs a ciphertext ct.

• ORE.Compare(ct1, ct2) → b: On input two ciphertexts ct1, ct2, the compare algorithm ORE.Compare
outputs a bit b ∈ {0, 1}.

An ORE scheme is captured by correctness, indistinguishability under an ordered chosen plaintext attack
(IND-OCPA). Details about these properties will be introduced in deliverable D3.1.

Applying ORE to CASTOR. In CASTOR project, different applications require trust path routing, in which
a path is with varying Actual Trust Level (ATL). As described, CASTOR project consists of both inter- and
intra-domain network optimization. Especially, in intra-domain case, every orchestrator can access to all
ATLs of all nodes in this domain. When realizing the path routing, every orchestrator can encrypt all ATLs,
pass the lowest ATL and all encrypted ATL values to other orchestrators in different domains.As shown
in Figure 6.23, we describe the workflow of an ORE scheme used in CASTOR project with taking three
domains and orchestrators as an example.

1. Orchestrator A (B) generates the secret key skA (skB) by using the algorithm ORE.Setup.

2. Nodes in domain A (B) sends ATLs to the orchestrator A (B).

3. Orchestrator A (B) computes each ciphertext associated with each ATL by executing the algorithm
ORE.Encrypt.

4. Orchestrator A (B) sends ciphertexts and the lowest ATL value in domain A (B) to the orchestrator
C (can be any entity).

5. After receiving ciphertexts, the orchestrator C (any entity, who can also be orchestrator A or B)
compares different ciphertexts using the algorithm ORE.Compare to get the order of ATLs.

In CASTOR, cross-domain trust evaluation necessitates a privacy-preserving method to compare Trust
Levels (ATLs) across different administrative domains. To achieve this, the system employs Order-
Revealing Encryption (ORE) schemes. This cryptographic primitive allows the orchestrators from different
domains to determine the relative order of their encrypted ATLs, for instance, identifying which domain
has the higher or lower trust level without ever decrypting them and revealing the actual numerical values.
This capability is crucial for making routing decisions based on the least trusted segment of a path while
maintaining the confidentiality of each domain’s internal trust assessment.

From a cryptographic perspective, it is important to acknowledge that ORE schemes do not provide the
same level of security as Fully Homomorphic Encryption and can leak some information beyond the order.
The primary leakage is the equality pattern and the most significant bit of difference between plaintexts,
revealing the first position in which two encrypted messages begin to differ. However, under state-of-the-
art ORE constructions, this controlled leakage is considered acceptable for many practical applications.
Crucially, any external adversary or a curious orchestrator cannot feasibly recover the entire original
message (the actual ATL value) from the ciphertext alone. The security of modern ORE ensures that,

CASTOR D2.1 Public Page 100 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

despite the partial information leakage, the plaintext data remains confidential and is not fully exposed,
thereby striking a viable balance between functional utility and privacy preservation for the CASTOR
cross-domain use case.

CASTOR D2.1 Public Page 101 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 7

CASTOR Methodology

The methodology adopted for the creation of this deliverable is presented in this chapter, beginning with
the design of the CASTOR Minimum Viable Product (MVP), which serves to demonstrate the common
vision of the consortium. It then continues with the elicitation of the technical (Chapter 9) and use case
requirements (Chapter 8) that support the development of the core MVP features.

Within this framework, the methodology described herein has been applied to design the complete CAS-
TOR landscape in terms of both research and specifications. The relationship between the technical and
functional requirements and the various use case needs and scenarios is detailed in Chapter 8. Further-
more, the design of the CASTOR MVP has been carefully planned to incorporate the activities scheduled
for the project demonstrators, as described in Chapter 10 of this deliverable. This systematic approach
ensures a coherent and well-structured foundation for the subsequent stages of the CASTOR project.

7.1 Methodology for MVP Design

As a term introduced by Frank Robinson in 2001, the ”Minimum Viable Product” (MVP) pertains to an
agile and lean approach for the validated planning and design of a product. An MVP constitutes a product
version with an adequate number of features that can satisfy the needs of initial users, while targeting at
offering input for further product improvements in the future. By providing early feedback during product
development, an MVP has a lower cost compared to the implementation of a wider stack of features and
the subsequent collection of feedback at the end of the implementation process of the product. In addition,
an MVP can help newly established companies to discover business opportunities by experimenting on
the reactions of customers while trying different business models.

The four use cases of the CASTOR project will contribute to the design of an effective MVP. Even from the
initial phase of WP2, they have given input about their activities that should be described in the CASTOR
methodology. The demonstrators’ engagement contributed to the establishment a clear definition of the
project’s scope and purpose. This was achieved by delving into the actual benefits that the proposed
solution would offer to the end users. The consortium engaged in a collaborative process, where the
demonstrators shared their insights and the technical, research, and academic partners analysed the
information. This process allowed the consortium to answer the fundamental question of “What Problem
You’re Solving.” Additionally, by describing the “as-is” and “to-be” scenarios for each demonstrator, the
consortium identified areas where the project vision could be refined and demonstrated how the existing
workflows could be enhanced with the intervention of CASTOR. Moreover, by acknowledging existing
gaps, CASTOR also aims to develop additional valuable services that provide competitive advantages to
end-user organisations.

CASTOR D2.1 Public Page 102 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

7.1.1 Requirements Definition Process

After discussing the initial vision during the project’s DoA preparation, the consortium worked together to
refine the value propositions of CASTOR. The consortium partners agreed on the core services outlined in
Section 2.1 and conducted an analysis of the State-of-the-Art for each of the identified project innovations,
which is further detailed in Section 2.2. This analysis was particularly important given the research
nature of CASTOR as it allowed the consortium to gain insights into the competition and understand
the current state of the market. The findings from this analysis will be utilised in WP7, which focuses
on Dissemination, Standardization, Exploitation, and Impact Creation. This information will drive the
definition of future pathways for exploiting the project’s outputs and defining the go-to-market strategy for
both the framework itself and its individual assets.

Moving forward with the MVP definition, the consortium proceeded to identify the stakeholders within the
supply chain context. They also determined the specific actors and entities involved in the envisioned use
cases, along with their respective goals (Section 7). This exercise aimed to gain a deeper understanding
of the intended beneficiaries for whom the consortium is developing the solution. To achieve this goal,
it is necessary to gather and prioritise requirements. Within the context of CASTOR, requirements are
gathered in two ways. Firstly, technical requirements are derived from the technical partners within the
consortium who are responsible for designing and developing the overall solution. Secondly, requirements
are defined based on the use cases or user stories provided by the project’s demonstrators. Once all the
requirements have been collected, the partner in charge of requirements elicitation, with the consensus
of the entire consortium, will prioritise them.

As the project progresses, an essential component of the MVP definition is the implementation of the
”Build, Test, and Learn” cycle. This cycle is integrated into the development of the core technical Work
Packages 3, 4, and 5, which involve the creation of both early and advanced versions of all project
modules, including the CASTOR framework itself. Through an iterative process, all technical partners will
develop their respective modules and conduct testing at early and mature trial sites (demonstrators). This
approach aims to maximise the value added both to each module and the whole CASTOR framework.

The MVP definition process outlined in this section aims to provide a specific and comprehensive de-
piction of the CASTOR platform. This includes a detailed examination and analysis of the technical,
functional, and security requirements of the various architectural components involved.

At its core, the MVP aligns with the overall vision of the consortium and the adopted product development
process, taking into consideration the expectations of the users. Its purpose is to provide tangible value,
validate methodological ideas and hypotheses, and serve as a guide for design and development activities
throughout the project implementation. The CASTOR MVP is expected to play a crucial role in directing
and shaping the ongoing work within the project.

7.2 Requirements Elicitation Methodology

A requirement is a statement which translates or expresses a need and its associated constraints and
conditions with the purpose to transform through their analysis the stakeholder, requirement-driven view
of desired services into a technical view of a required product that could deliver those services.

The process of eliciting requirements serves as a significant foundation for developing the business value
of the CASTOR framework. Since these requirements form the basis for addressing identified needs,
it is vital that they are comprehensive, transparent, and accurate. To ensure successful elicitation, it is
essential for the individual or organisation responsible to actively involve all relevant stakeholders and
engage them in this process. The elicitation of requirements is typically not a one-time event. For ex-
ample, during the elaboration phase of a project, requirements may be collected through interviews or
requirements workshops. As these requirements are utilised to define and validate models or products,

CASTOR D2.1 Public Page 103 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

gaps in the requirements may become apparent, necessitating the elicitation of additional details for those
newly identified requirements. In the next subsections, an overview of the methods employed within the
CASTOR project for defining stakeholder requirements is provided.

7.2.1 Technical Requirements Specification Process

The CASTOR project has employed an agile methodology, characterised by its iterative nature. This
methodology emphasises clear communication and understanding between the business, technical, and
scientific aspects of the project. It establishes transparent expectations at the project’s commencement
and at each milestone, fostering collaboration and progress.

The CASTOR approach to system requirement specification initiates with individual interviews conducted
with the consortium technical partners. These interviews were carried out using online tools, resulting
in the collection of raw requirements. Raw requirements refer to requirements that have not undergone
analysis or been formally documented in a well-structured requirement notation. The collected raw re-
quirements are then subjected to an iterative internal process led by the CASTOR system architects to
yield more refined results.

During this phase, brainstorming techniques are employed through ad-hoc calls to further enhance the
requirements. The outcomes of these brainstorming sessions are subsequently compared with the tech-
nical aspects of the system and linked to one or more of the specified value propositions of the project.
This iterative process ultimately leads to the identification and formulation of the necessary technical
requirements, which are detailed in Chapter 9.

Nevertheless, it is important to acknowledge that requirements derived from interviews can occasionally
be unclear. This ambiguity may arise due to potential misinterpretation of stakeholder needs by the sys-
tem architects, or when stakeholders struggle to comprehend certain questions or lack technical expertise
to provide accurate answers. As a result, alongside the process of requirements collection, the CASTOR
academic partners have conducted a comprehensive document analysis. This analysis takes the form
of a State-of-the-Art review, including an extensive list of industry practices and relevant literature. The
purpose of this analysis is twofold: to validate the specified requirements and to identify applicable stan-
dards and constraints. By conducting this analysis, the aim is to enhance the quality of the requirements
generated within the project.

The process of requirements collection underwent continuous review and examination by the WP2 focus
group. The WP2 focus group conducted dedicated teleconferences, involving specific partners or the
whole CASTOR consortium, to discuss and assess the gathered requirements. Additionally, one of their
responsibilities was to offer valuable feedback on the interview participants. The success of eliciting user
requirements relies significantly on the knowledge and experience of the stakeholders, making the input
from the WP2 focus group crucial in ensuring the efficacy and accuracy of the requirements gathering
process.

7.2.2 Use Case Requirements Specification Process

In addition to the overall input on technical requirements, the use case partners provided a detailed
description of their user stories and a technical explanation of how they intended to utilize the CASTOR
framework. They also specified the core functionalities they planned to leverage. This allowed for a more
precise alignment of requirements with the demonstrators, providing opportunities for further research
and enabling the demonstrators to explore multiple implementations, if time and resources permit.

The use case partners collaborated closely with the research partners to refine the requirements and
elaborate on the technical details derived from the narratives. This followed an approach commonly
observed in agile projects. The refinement process involved translating the narratives into specific user

CASTOR D2.1 Public Page 104 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

stories. User stories are concise units of ideas used to provide high-level descriptions of requirements.
They depict a particular feature from the perspective of an end user, typically a system user or customer.
User stories are designed to be easily understandable and expressible by non-technical partners. Despite
being short, typically consisting of a single sentence, user stories possess the unique ability to be self-
explanatory and contain sufficient information to describe the requirement. This allows developers to
provide a reasonable estimate of the effort required for implementation.

For each of the three distinct CASTOR Use Cases, the demonstrator partners were initially requested to
provide user stories that describe the ”to-be” reference scenario. To elicit requirements from these user
stories, the perspective that a user story serves as a well-defined requirement is embraced, in the sense
that:

• Emphasises the perspective of a specific role that will utilise or be affected by the solution.

• Defines the requirement using language that is meaningful to that role.

• Clarifies the reasoning behind the requirement.

• Facilitates the definition of high-level requirements without delving into detailed specifics very early.

• Takes into account the user’s goals and the business value associated with each requirement.

These aspects are captured using a straightforward textual template to create a comprehensive sentence.
While various templates are available, the Connextra template is employed by 70% of practitioners [49].

User Story Title

As a <type of user>, I want to <some goal or action> so that <some reason or benefit>

In an agile project, new or updated user stories may arise at any stage of implementation, leading to
changes in the backlog. This behaviour is highly desirable as it ensures a continual focus on aspects that
are meaningful to users, while potentially excluding features that may have less importance in terms of
the value they offer to both the system and its surrounding environment.

To ensure that the user stories developed by the project’s demonstrators in this step meet the necessary
quality and criteria, a user story validation process is incorporated into the methodology. The objective
of validating each user story is to assess the extent to which it fulfils the INVEST characteristics. The
acronym INVEST serves as a mnemonic for a well-established set of criteria or checklist used to evaluate
the quality of a user story. If a user story fails to satisfy any of these criteria, the team may consider
rephrasing it or even rewriting it. This technique has been recommended by Mike Cohn [49].

An optimal user story, based on INVEST characteristics, should be:

• Independent: The user story should possess self-contained characteristics, meaning that it does
not rely on another user story for its completion or functionality.

• Negotiable: User stories are subject to change and rewriting until they become part of an iteration.

• Valuable: A user story should provide value to the end user.

• Estimable: The size of a user story should always be able to be estimated by the team.

• Small: User stories should be sized appropriately to ensure they can be effectively planned, tasked
and prioritised with a reasonable level of certainty.

• Testable: The user story or its related description should include the necessary information to
facilitate the development of tests.

CASTOR D2.1 Public Page 105 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

The user stories described for each of the three CASTOR Use Cases are presented in Section 7 as part
of the corresponding “to-be” reference scenarios.

CASTOR D2.1 Public Page 106 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 8

CASTOR Use Cases

8.1 High-Level Introduction of the CASTOR Use Cases Towards
Trusted Traffic Engineering process

The overarching architecture of CASTOR spans across the Compute Continuum, allowing stakeholders
to ensure secure data transmission over trusted paths. The evaluation and validation of the CASTOR
framework and inner-workings requires a careful selection of realistic environments with diverse charac-
teristics. To this end, CASTOR introduces four diverse and carefully selected use cases stemming from
time-constrained and demanding application domains (primarily in the context of Automotive & Aerospace
safety-critical domains). This allows the incorporation of ensuring path provisioning for services with vary-
ing path profile requirements (e.g., different network- and trust-related objectives). Through such appli-
cation services of mixed criticality, the endmost goal is to be able to evaluate the performance footprint
of the CASTOR process into the “vanilla” (segment and source) routing protocol stack against a
diverse conditions so as to have a wide coverage on the overhead that each technology strand
(see System Model in Chapter 3) may impose: first of all, into the overarching inter- and intra-domain
forwarding and subsequently on the applications’ operational profile.

The second driving factor in the use case specification lies in the definition of the overarching Key Perfor-
mance Indicators (KPIs) for each evaluation/experimentation scenario. One strategic approach towards
the KPI specification is to decouple the application operations from the (multi-) path establishment and
control at the routing plane. However, we have to note that at this early stage of the project, there cannot
be a definitive answer on whether CASTOR may hedge wide applicability to real-world deployments due
to significant boundaries that may be posed to the operational profile of the employing applications. Re-
call that one of the core design principles is transparency and seamless (to-the-service) establishment
and maintenance of the required SSLAs (during runtime) which if not manifested can significantly affect
the adoption of such dynamic solutions to their existing static state - either during boot-up [27] or based
on predefined paths [45]. This calls for a detailed benchmarking and critical evaluation on all aspects of
the CASTOR CC-wide framework. Consequently, besides the well-defined and regulated V2X application
use cases where there are strict KPI requirements so as to not compromise the safety characteristics of
the deployed services, we aim to capture the CASTOR overhead through delta measurements in order
to ensure that the overall performance of the application traffic does not exceed acceptable margins.

In what follows, we delve into the details of each one of the four envisioned use cases. Starting from
a short summary of the key characteristics and the focal points of each use case (Tables 8.1 - 8.4),
we present the current practices of traffic engineering in each of the pilot domains and critically reflect
on the needs that CASTOR aims to address. This culminates in the specification of concrete scenario
compounds (defined in the form of “user stories”) associated with KPIs that will guide the evaluation of
each one of the CASTOR functional components as detailed in Table 6.1. As all four use cases focus on

CASTOR D2.1 Public Page 107 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

the performance overhead that CASTOR introduces in the forwarding plane, a separate Proof-of-Concept
is presented in Section 8.6, reflecting on the validation of the CASTOR capabilities at the orchestration
layer and the control service responsible for the path exploration process (including all properties of path
construction, registration and enforcement). As we dive deeper into technical discussions and approach
the first integrated release of the CASTOR framework, the goal is to review this initial set of KPIs, so as
to incorporate the challenges and additional overhead posed by inter-domain service provisioning.

Table 8.1: UC1 - Highly Available & Secure Airspace Monitoring in Urban Air Mobility (UAM) Environments

UC1 - Highly Available & Secure Airspace Monitoring in Urban Air Mobility (UAM) Environments
Urban Air Mobility environments depend on a continuous flow of accurate surveillance information to
maintain awareness of airspace state and activity. Such environments are highly dynamic and operators
must trust that their surveillance and reporting feeds are not only timely but also protected from misrouting
and tampering. Traditional network monitoring and adaptation strategies offer little insight into the real-
time trustworthiness of the network path over which surveillance data is shared. We must assume that
successfully established network paths are trustworthy and remain so. Such assumptions can result in
critical surveillance lapses in the event that a network intrusion remains undetected or unaddressed while
manual intervention and troubleshooting procedures are carried out.

This use case explores how CASTOR can help airspace monitoring applications adapt their behaviour in
real time. Specifically, it aims to employ CASTOR in order to engrain link-level trust guarantees
as part of the establishment of end-to-end service connectivity. In contrast to the rest of the use
cases in CASTOR where they consdider accumulated path-level trust guarantees, these scenarios aim to
shed light on the robustness and flexibility of the CASTOR framework to evaluate the trust posture of the
infrastructure topology, recommend and enforce accurate traffic engineering policies. When the network
path is trustworthy, highly sensitive information such as radar health and sensor capabilities can be shared
confidently with other actors. When CASTOR detects and reports that the path no longer satisfies the
integrity or confidentiality expectations of the surveillance source, the source can automatically respond
and dial down the sharing of highly sensitive data while maintaining the distribution of less sensitive (but
nevertheless safety critical) airspace activity observations. To further evaluate the agility of the trust
awareness and the multi-path control offered by CASTOR, the presented scenarios consider the
dynamic transition to fallback pre-established SSLAs, when any of the primary SSLA objectives
gets compromised. We seek to evaluate how CASTOR can instrument, monitor and adapt network
paths automatically in the face of sample intrusions, compromises, and failures of the underlying path
infrastructure. We seek to explore this within the context of a single network domain in which we monitor
a highly sensitive area such as an airport and also to push beyond into network paths stretching across
multiple domains mirroring the real world deployment scenarios of centralized surveillance collection and
observation points that serve as synchronization points for the distributed surveillance ecosystem.

To keep the evaluation aligned with our lab conditions rather than production-grade networks, we inten-
tionally avoid asserting industry SLA targets such as absolute latency, jitter, or loss. Instead, we first
benchmark a baseline profile of our lab network and then express all CASTOR results as ∆-KPIs that
capture incremental overheads and improvements relative to that baseline. Examples include ∆latency,
∆loss, ∆CPU, and tier flip propagation time. This approach keeps outcomes reproducible in our environ-
ment while still indicating their plausibility for production deployments.

CASTOR D2.1 Public Page 108 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 8.2: UC2 - Trustworthy Communications of First Responder Mobile Units and the Compute Contin-
uum

UC2 - Trustworthy Communications of First Responder Mobile Units and the Compute Continuum
This use case focuses on maintaining secure operational readiness for first-responder OBUs, which rely
on timely PKI certificate provisioning and secure OTA firmware updates. These devices operate in highly
dynamic, safety-critical environments where network conditions are unpredictable and backend connec-
tivity may involve multiple administrative domains. Since first-responder vehicles often move across re-
gions covered by different operators or jurisdictions, their security services—such as certificate renewal
from external PKIs—must function seamlessly across domains. Cross-domain operation is essential
because the PKI or OTA backend may not reside within the same network domain as the responder’s cur-
rent connectivity. Without proper trust exposure and policy alignment between domains, these security
procedures would be vulnerable to misconfigured, untrusted, or underperforming network segments.

Within the well-regulated V2X communication fabric, CASTOR is the first of its kind to evaluate the in-
corporation of trust objectives towards the end-to-end V2X service provisioning: from the far-edge
OBU elements, the V2X Application Server, OTA servers, and external PKI infrastructures. Even though
there are existing projects that have yielded significant results towards trust assurances at an application
service level (e.g., CONNECT [135]), CASTOR introduces such concepts at the routing plane. Through
continuous SSLA compliance checks, trust semantics exchange, and dynamic path validation, CASTOR
ensures that certificate downloads and firmware updates remain secure, consistent, and resilient even
as vehicles roam, network integrity fluctuates, or cross-domain routing is required.

Table 8.3: UC3 - Priority-based Trusted Messaging & Scalable Performance for CCAM Applications

UC3 - Priority-based Trusted Messaging & Scalable Performance for CCAM Applications
In the highly interconnected and complex environments envisioned in Cooperative, Connected and Au-
tomated Mobility (CCAM), it is essential to have a framework capable of providing a trust assessment
not only on the veracity of data collected from various sources, but also on the reliability, integrity, and
end-to-end guarantees of the communication channels that enable seamless service connectivity among
CCAM stakeholders across multiple domains.

CCAM services rely on the timely and trustworthy exchange of information such as crash alerts, road
hazards, traffic updates, and emergency events. These messages (e.g., CAM and DENM) must be
delivered with strict guarantees on latency, reliability, integrity, and confidentiality to enable safe and
efficient response actions. However, today’s communication paths traverse heterogeneous networks
and operators, and are largely based on best-effort performance. This means that delays, degraded
throughput, or unverified communication routes may directly affect safety-critical operations.

The project uses three representative user stories to explore whether critical ITS (Intelligent Transporta-
tion System) services can be reliably improved by CASTOR framework, by enabling trustworthy commu-
nication paths and service delivery. These stories are: (1) delivering real-time traffic information from
road events, (2) supporting emergency responders who depend on timely and trustworthy alerts, and (3)
notifying connected vehicles about nearby vulnerable road users such as pedestrians or cyclists. Each
case represents a safety-critical function where delays, loss of integrity, or incomplete data could lead to
poor decisions or dangerous outcomes. Building on top of the existing CASTOR overhead considerations,
this use case goes beyond the single-domain scenarios and evaluates how CASTOR affects the
safety profile of the aforementioned functions in cross-domain scenarios. Eventually, the goal is to
understand what type of trust mechanisms, orchestration logic, or network guarantees may be needed,
and to use the user stories as tangible benchmarks that guide the exploration.

CASTOR D2.1 Public Page 109 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 8.4: UC4 - Future-Proofing Next-Generation Unmanned Aerial Vehicles Communications towards
Critical Infrastructure Sustainability

UC4 - Future-Proofing Next-Generation Unmanned Aerial Vehicles Communications towards Crit-
ical Infrastructure Sustainability
Data flows of UAVs in modern 5G systems traverse the internet through a network where performance is
guaranteed using QoS mechanisms but there is no assurance of trust. With traffic exiting the 5G network
towards the data plane, there is no visibility if the routers forwarding the traffic are secure, compromised,
or degraded. Blind spots emerge in this situation where sensitive information such as mission telemetry
and inspection data are routed through nodes that ensure performance but are not trustworthy. The goal
of this use case is to introduce continuous trust assessment and dynamic path selection to address the
blind spots. CASTOR fills that role by performing a continuous, evidence-based trust attestation to the
routers and the network paths of the system, using a trust scores, computed and applied to routes to
select the optimal path and rerouting to routes with better trust score when necessary.

The scenarios will be used to validate this use case. In the first scenario CASTOR will be used to ensure
that the UAV mission inspection data that exit the 5G network will reach the destination though low-
latency, tamper-evident, and trustworthy paths, eliminating the risk of compromised routers degrading
confidentiality or integrity. The second scenario, will integrate a risk index that is provided by the MNO of
the 5G network that will be taken into account during the trust assessment, demonstrating how external
risks can directly influence trust-guided routing. The third one is an exploration scenario that focuses on
the core of the 5G network and not in the data plane, on a distributed UPF deployment ensuring inter-
UPF communication is trustworthy and remains performant, with user plane data remaining encrypted
and opaque. In this context, the use case aims assess CASTOR’s capacity to support trust-aware
inter-domain connectivity for 5G verticals, taking into account the operational and trust-related
constraints of shared backhaul domains.

Since the scenarios of Use Case 4 will be evaluated in a lab environment, first, the baseline values (such
as latency, packet loss etc) will be established through the nominal operation user stories, taking into
consideration potential biases introduced by the emulation environment of the lab (e.g., delays introduced
through the virtualisation layer of the emulations). Then, the CASTOR user stories will benchmark the
overhead that CASTOR adds against the reference values of the nominal user stories.

8.2 Highly Available & Secure Airspace Monitoring in Urban Air
Mobility (UAM) Environments

Before introducing this use case, it may be beneficial to begin with a glossary of terms as much of the
terminology and acronyms will be unfamiliar to readers not averse with this domain.

Table 8.5: Short Glossary of Terms from Airspace Management

Term Description
ADS-B Automatic Dependent Surveillance–Broadcast. Cooperative surveillance technology in

which aircraft broadcast their position and velocity; ground receivers ingest these messages.
CISP Common Information Service Provider. Broker that aggregates and disseminates shared

airspace information—such as restrictions, weather, and surveillance summaries—to
authorised consumers.

COP Common Operating Picture. A shared, near-real-time fused view of the airspace built from
multiple data sources.

Edge/on-prem cache
(USSP/CISP edge)

Local deployment of cloud services at the site to reduce latency and maintain operation
during WAN outages.

CASTOR D2.1 Public Page 110 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Term Description
Electric Vertical TakeOff
and Landing (eVTOL)

aircraft

An electrically powered aircraft capable of taking off, hovering, and landing vertically without a
runway, typically used for urban air mobility operations.

GCS Ground Control Station. Operator workstation that commands the UAV and receives
telemetry data.

LAN / Campus network Operator-managed local network domain interconnecting sensors, GCS, and edge services.
UAM Urban Air Mobility. Low-altitude movement of people or goods within cities using UAVs or

electric Vertical TakeOff and Landing (eVTOL) vehicles over dense, dynamic routes.
UAV Unmanned Aerial Vehicle. Aircraft operated without an onboard pilot; commonly referred to

as a drone.
U-space / UTM Unmanned Traffic Management. Digital infrastructure and rules enabling safe, scalable UAV

operations—flight planning, conformance monitoring, and strategic deconfliction.
USSP U-Space Service Supplier. Provider that validates flight plans, monitors conformance, and

mediates operator access to U-space services.
Vertiport Urban take-off and landing site for UAVs or eVTOLs equipped with associated ground

infrastructure.

Unmanned airspace is going through explosive growth as UAVs take on increasing responsibilities from
package delivery to media services, from taxis to inspection and emergency response [120]. Traffic
density is rising just as steeply: satisfying urban demand could mean tens of thousands of low-altitude
flights per hour over a single metropolis - Paris is often cited at 87,000 flights/h in mature scenarios [55].
To keep pace, U-space/Unmanned Traffic Management (UTM) architectures increasingly shuttle flight
plans, surveillance records, and separation commands (to keep the airspace orderly and avoid collisions
between occupants) across public cloud and internet links. As a result, a growing patchwork of UAV
operators, ground sensors, USSPs, and CISPs are now competing for bandwidth and trust on shared
networks in order to share real-time situational data (airspace occupancy, obstacles, wind patterns) and
maintain a combined view of airspace for all stakeholders in the ecosystem. The core problem: we cannot
tell if the routers that carry this traffic constantly remain trustworthy.

Key domains in this complex, multi-domain connectivity landscape:

Ground Infrastructure on Private LANs At each distribution hub or vertiport, Ground Control Stations
(GCS) and ground sensor arrays connect over isolated, operator-managed LANs. This domain
guarantees ultra-low, deterministic latencies (≤ 100 ms), fine-grained QoS, zero-trust enforcement,
and local auditability.

USSP & CISP on Commercial Public Cloud USSPs and CISPs run in the public cloud to leverage elas-
tic scalability for peak delivery periods, built-in global redundancy, and advanced multi-tenant secu-
rity controls. CISPs aggregate telemetry from distributed ground sensors (e.g., Collins Aerospace
Skyler™ radars) to furnish real-time airspace maps and obstacle alerts.

8.2.1 System Model, Communication Interfaces, and Protocols

The domain of Unmanned Aerial Vehicle (UAV) surveillance is undergoing iterative refinement globally,
with diverse deployment models emerging across continents and countries under the guidance of various
regulatory and operational bodies. In CASTOR, we adopt a deployment topology based on the European
U-Space model [61] in which U-Space Service Providers manage airspace zones and access common
airspace information through a CISP.

8.2.1.1 System Components

In Figure 8.1, we present a deployment view with two airspace zones being monitored and managed by
two sites. Each site connects to a USSP running on the public cloud. The key system components are

CASTOR D2.1 Public Page 111 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.1: Deployment of Key System Components

as follows:

Mobile Network Our use case envisions UAVs using cellular networks (private or public) for connectivity
to UAV Ground Control Stations.

• UAV. Unmanned Aerial Vehicles such as drones are tethered to UAV Ground Control Sta-
tions through 5G links. UAVs receive flight plans before launch which lay out a succession of
waypoints that the UAV must adhere to when travelling from launch to destination sites.

Zone Local Area Network Each operational airspace zone has an area of coverage which is populated
by UAVs with corresponding Ground Control Stations and surveillance equipment such as radars.
A local LAN deployed and maintained by the zone operator offers a connectivity backbone to local
components

• GCS. UAVs are managed by operators through a Ground Control Station (GCS) that is used
to instruct UAVs on their movements and receive continuous telemetry updates from the UAV
as it travels.

• Ground Sensors. Nodes such as radars and ADS-B receivers form a terrestrial surveillance
infrastructure that maintains a continuously updated view of the airspace overhead. Such data
is sent to the USSP for analysis.

Public Cloud For reasons of scalability and availability, USSPs and CISPs are deployed on public cloud
infrastructure with connectivity from the Zone LAN conducted through a VPN.

• USSP. U-Space Service Providers interface with UAV operators through their GCS and act as
their mediator with the rest of the airspace ecosystem – from confirming flight plan validity to
publishing and consuming data from the CISP. The USSP ensures that operators adhere to
the operational and safety requirements of U-Space.

• CISP. Acts as the single source of truth for static and dynamic data (e.g., airspace restric-
tions, surveillance data, weather) required for U-space operations. It collects, processes, and
disseminates data from multiple sources, such as air traffic control systems, ground sensors,
weather data and predictions. The CISP is essentially an airspace surveillance broker that
pools common airspace information and brokers an accurate and detailed view of the airspace.

CASTOR D2.1 Public Page 112 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

It may exchange a high-level view of the unmanned airspace with a central SWIM node from
which it is distributed to interested commercial airspace operators. It additionally consumes
information from the SWIM node relevant to U-Space operations such as weather alerts and
airspace restrictions.

8.2.1.2 Intra and inter-domain communication interfaces

As we have seen, the operation and management of an unmanned airspace zone involves multiple net-
work domains. We begin with the relatively straightforward task of provisioning a UAV flight plan. Before
the plan can be deployed to the UAV, it must be validated. The GCS, deployed in the local zone network,
is used to draft and submit the plan to the USSP on the cloud for validation. This communication from
the GCS (Ground Infrastructure/LAN Domain) to the USSP (Public Cloud Domain) requires inter-domain
communication. This path typically traverses numerous intervening networks, including multiple Internet
Service Providers (ISPs), which is why it often uses a VPN for security. The USSP applies its knowledge
by consuming relevant data from the CISP, such as no-fly zones, weather conditions, and information
about other USSPs’ approved flight path reservations, to ensure no conflicts exist. If all checks pass and
the USSP approves the flight, the GCS will then provision the flight plan to the UAV, which is typically
connected via a cellular connection (see Figure 8.2) .

Figure 8.2: Flight Plan Registration Information Flow

An active airspace is under continuous management and surveillance. Telemetry from UAVs in flight is
continuously streamed to the GCS and position updates are being streamed to the USSP which ensures
that the aircraft is operating within agreed flight volume boundaries. Local surveillance data from a ground
radar are streamed to the CISP from where it is consumed by the USSP as shown in Figure 8.3. This
entails a key inter-domain data transfer from the LAN to the Public Cloud domain.

Airspace is comprised of a collection of independent multi-operator airspace zones and neighbouring
zones must share a Common Operating Picture of the airspace to improve awareness – to alert zone
operators of dynamic surveillance data and airspace restrictions that could warrant consideration and
action in the management of their own zones. CISP nodes are responsible for coordinating the sharing
of common information amongst the community of airspace zone USSPs. Each USSP is responsible for

CASTOR D2.1 Public Page 113 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.3: Unmanned Airspace Surveillance Information Flow

the management of a single airspace zone. It subscribes to be notified of the publication of relevant data
from surveillance sensors and national authorities

8.2.2 “As-is” Scenario

In today’s UAV ecosystem, every piece of operational data, whether it’s periodic telemetry uplinks from
GCS to USSPs, real-time radar/ADS-B surveillance observations streamed to the CISP, or dynamic
weather and NOTAM updates pulled into the CISP, traverses a chain of routers whose integrity is simply
assumed rather than actively verified. A typical flight begins when a GCS dispatches its routine telemetry
report (position, speed, battery health) over a VPN to the USSP; in parallel, authorised sensor gateways
publish surveillance observations directly to the CISP for downstream consumers, while the USSP con-
sumes common-information feeds from the CISP. At each handoff, from routers in the public cloud, to
routers in private carrier backbones, to edge routers on private LANs of urban UAM hubs—routing deci-
sions are driven exclusively by QoS queues, ACLs and encryption tunnels (some airports already pilot
on-prem cache nodes for failsafe operation, but the primary USSP/CISP remains in the public cloud). Typ-
ically lacking in this chain is attestation or monitoring of the software image, firmware version, or runtime
behaviour of the routers themselves. Because these routers are never dynamically verified, a stealthy
compromise (e.g., a backdoored firmware update on a router) can continue in the critical path of data
flowing along the path without raising alarms. The network reacts only to link failures or manual reconfig-
uration, so a degraded router can remain in service for an extended period of time (possibly even days or
weeks), silently diverting or delaying critical UAV or sensor traffic. Worse still, when common-information
feeds are disseminated via the CISP after traversing unverified networks, downstream consumers ingest
them with no visibility of the trust posture of the path they took through private or public routers. A data-
fusion platform combining telemetry, radar, and weather feeds has no way to know that one feed skirted
an untrusted cloud router and therefore cannot assign lower confidence to that source. This blind trust
forces everyone to treat every stream as equally reliable or, conservatively, to discount all sources when-
ever any single router’s security is in doubt - sacrificing both responsiveness and accuracy in real-time

CASTOR D2.1 Public Page 114 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

decision support.

On the private LAN at each hub, the same trust blind spot recurs. If an edge router’s encryption layer
or firmware has drifted from its approved state, downstream systems cannot detect that loss of integrity;
they continue to forward or accept traffic purely on QoS settings. Consequently, stale or tampered pack-
ets may enter sensor-fusion chains unnoticed, and operators must rely on manual checks or periodic
audits to discover the fault - often long after it has already biased their surveillance picture. Across do-
mains from backbone to cloud to LAN, each organization conducts periodic, manual audits of its own
routers, but there is no cross-domain, real-time attestation framework. Adjacent zones consume and
contribute sensor/common-information feeds via the CISP without any chain-of-trust metadata, leading
to inconsistent confidence levels and delayed emergency responses. In practice, today’s “As-Is” architec-
ture delivers on throughput and uptime SLAs but remains fundamentally reactive, inflexible in handling
mixed-confidentiality sensor data, and entirely blind to the actual integrity of the routers carrying our most
critical UAV and ground-sensor traffic. The next section summarises how CASTOR closes this gap.

8.2.3 Collins Use Case needs from CASTOR

The promise of UAVs hinges on uninterrupted streams of telemetry, surveillance feeds and sensor health
diagnostics flowing through an end-to-end network of routers - from private-LAN through public-cloud
platforms. Today’s routing fabric delivers on throughput and latency SLAs but makes no distinction be-
tween a fully trusted hardware router in the backbone and an unvetted virtual router in a cloud VPN; nor
does it convey any trust metadata alongside published data feeds. As a result, a downstream consumer
- whether a CISP aggregating multi-sensor fusions or a logistics operator correlating telemetry from ten
different UAVs - has zero visibility into the integrity of the network path that carried each packet. They
cannot weight or filter incoming streams based on path trust and must either treat everything as equally
reliable or conservatively disregard data whenever any single hop’s security posture is uncertain. Local
edge nodes (USSP and CISP) deployed in hubs such as airports 1 eliminate Internet latency, but they still
rely on local routers whose integrity must be continuously verified.

To bridge this critical gap, CASTOR must deliver three core capabilities:

1. Router-Centric Trust Attestation & Scoring CASTOR continuously measures firmware, configu-
ration, and runtime state on every router to maintain an up-to-date Actual Trust Level (ATL).

2. Dynamic Trust-Aware Traffic Steering When a path’s ATL drops below the Required Trust Level
(RTL), CASTOR automatically moves the flow to the nearest compliant route.

3. Tiered Security Service-Level Agreements (SSLAs) Publishers can declare primary and fallback
SSLAs; CASTOR exposes which tier is active so applications can adapt payload confidentiality.

By exposing which SSLA is in effect rather than raw ATL numbers - CASTOR keeps the application in the
loop without leaking detailed trust scores, enabling sensors and other publishers to adapt their payload
confidentiality dynamically while preserving overall data continuity.

These core functions of continuous router integrity monitoring and automated rerouting when trust thresh-
olds are not met empower our UAV ecosystem to maintain high throughput and low latency, guaranteeing
that every critical packet travels only over provably trustworthy paths - even when individual routers de-
grade or fail.

1This is for practical reasons such as keeping the safety-critical loop inside the airport LAN and removing cloud dependency
from the critical operations path. It is also for security reasons as there is often high resolution and privacy-sensitive sensor
data that is not shared outside of the airport.

CASTOR D2.1 Public Page 115 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

UC1 Network/Trust Properties of Interest
Name Description
Integrity We need to have confidence that surveillance data has not been manipu-

lated enroute as this can have direct repercussions on how airspace is kept
safe

Performance Surveillance data has a short shelf life. It is gathered from multiple sources
and amalgamated to build a realtime dynamic view of the airspace. Late
data cannot contribute and result in incomplete or even misleading views of
the airspace

Observability/Auditability Operators must see SSLA compliance, ATL changes, and reroute events for
accountability and forensics.

Availability/Resilience Drops/outages blind operators.
Confidentiality Knowing the current trustworthiness of the network path enables the re-

striction of confidential data streams such as radar health and capabilities
to times that we are assured the network path has high link level integrity

Provenance When consuming data from a shared CISP, consumers need to see
the originating path’s trust tier to weight/triage data (e.g., Trust Indicator
TI=High/Low) where a Trust Indicator is derived from the current trustwor-
thiness of the network path (as assessed by CASTOR) within the context of
the SSLAs associated with the originating application.

Table 8.6: Network and Trust properties as service-level objectives

8.2.4 To-be Reference Scenario 1: On-Airport Trusted-Routing Loop for Real-
Time Surveillance

A hybrid edge/cloud pattern is increasingly recommended for high-consequence hubs: cloud scale for
regional coordination, on-site cache for sub-100 ms control. The objective is to ensure that every surveil-
lance packet carried inside a single airport LAN reaches the local UTM platform and ATC screens over
a path whose routers satisfy the airport’s Secure-SLA. CASTOR must continuously attest to each router,
calculate the path ATL, and reroute within milliseconds whenever the path falls below the RTL.

Figure 8.4: Identification of airspace threat potentially compromised

CASTOR D2.1 Public Page 116 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

In an airspace monitoring environment, we depend on secure and efficient network communications to
deliver real-time situational awareness. Currently, these networks focus on QoS-based traffic prioritiza-
tion without considering trust in the selection of network paths. This leads to trust blind spots in that
efficient but compromised routers can occupy key data transit points. Positioning untrusted routers in the
transmission paths of critical data leads to the risk of data being delayed and diverted to thwart critical
decision making. When router compromises are detected (through end user alerts or routine checks),
it is typically after transmission has been corrupted – corruption that may have been occurring over an
extended period of time. Surveillance data is comprised of multiple independent data streams. For assur-
ance purposes, we build in some data redundancy - we strive to have multiple sources of data to assess
and fuse together so we are not at the mercy of a single component of the monitoring infrastructure.

Components can misbehave through hardware or software faults, they can break, and they can possess
different weaknesses across the surveillance spectrum. These factors are taken into account during
the construction and maintenance of highly dynamic volumetric surveillance views. Currently however,
industry assumes that all data travels over equally trusted network paths and does not attach weighting
significance to the potential presence of a malicious actor in the network path.

With CASTOR, we envision a solution to these challenges. Network paths will be under continuous
trustworthiness evaluation through the deployment of trust monitoring and assessment on each router.

Leveraging distributed and global trust assessments, the CASTOR orchestrator will ensure that the QoS
and trust needs of a given application’s data transmission are satisfied and maintained with dynamic au-
tomated network path reconfiguration if needed. With trustworthiness constraints agreed and embedded
up front into network operations, surveillance domains can be confident that the trustworthiness demands
associated with any of the data being received have been satisfied by the network.

8.2.4.1 Zones & Multi-domain network routing

Figure 8.5: The Surveillance Continuum

As shown in Figure 8.5, a single unmanned airspace surveillance zone relies on connectivity beyond
the local LAN. The benefits and economics of cloud deployment (elastic scaling, maintenance, redun-
dancy and availability) hold the same attraction for aerospace as they do for any other enterprise. A

CASTOR D2.1 Public Page 117 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

typical deployment involves interaction with a cloud-hosted CISP and USSP. Hubs such as airports de-
ploy lightweight ‘edge instances’ of USSP/CISP on-prem to keep the shortest control loops inside the
local LAN and enable continued operation in the event of cloud connectivity issues (edge/on-premise
cache deployments are consistent with the deployment patterns described in ICAO UTM Framework
[77]). This ‘fallback’ behaviour contains our network considerations to a single network domain. The
‘normal’ operation extending across network domains also needs to be addressed which introduces ad-
ditional challenges from a trusted network path perspective.

In terms of surveillance data, we focus on data produced from a Collins Skyler radar which streams
continuous payloads to a CISP node. These payloads include large aircraft detections via Automatic De-
pendent Surveillance–Broadcast (ADSB) reports, low-altitude UAV detections and periodic radar health
and performance data.

8.2.5 To-be Reference Scenario 2: Collaborative Airport Operational Control Cen-
tres for Agile Decision Making

Airspace management and monitoring often span multiple administrative zones managed by different en-
tities such as airports, municipalities, or private organizations. Aircraft movements, both manned and un-
manned, routinely cross these administrative boundaries. Effective collaboration between neighbouring
zones is essential to maintain comprehensive situational awareness, enhance flight safety, and respond
rapidly and effectively to airspace incidents or emergencies.

While the surveillance capabilities of a single airspace zone operator are dimensioned and deployed to
satisfy the safety needs of that zone, this is a cooperative ecosystem where operators need to share and
leverage insights from neighbouring zones and regional authorities to extend visibility and collectively
implement regional imperatives such as dynamic no-fly zones and emergency traffic rerouting.

Inter-zone sharing of airspace data (Figure 8.6) introduces significant challenges, including inconsistent
data quality, potential security vulnerabilities, and varying trust levels associated with each zone’s infras-
tructure. Without a reliable mechanism to assess and communicate data trustworthiness, operational
decision-making across zones becomes slower, less effective, and potentially compromised.

Figure 8.6: Multiple airspace domains require coordination and cooperation

In the current operational paradigm, different airspace surveillance zones exchange critical information
to build a broader operational picture. Sensor observations (e.g., radar/ADS-B) and common information
(e.g., dynamic airspace restrictions, weather) are disseminated via the shared CISP, enabling authorised
consumers to subscribe by area of responsibility.

Figure 8.7 illustrates this existing data-sharing architecture, depicting how various zones contribute to,
and consume from, these common information services to build a broader operational picture.

While the model illustrated above enables information flow, it also exposes a major vulnerability: the lack
of verifiable trust and integrity assurance for data originating from external sources or passing through
multiple domains. This absence of a standardized, end-to-end trust framework means that each zone
independently evaluates data reliability, often through manual processes or simplistic criteria, which can

CASTOR D2.1 Public Page 118 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.7: Current Inter-Zone Data Exchange Model

lead to delays and inconsistent decision making. Each zone has limited visibility into the trustworthiness
of incoming data, making it difficult to assess whether the information has been securely transmitted and
is reliable for decision making. Emergency coordination or rapid response actions can be hindered by
uncertainty over the trustworthiness and timeliness of the incoming information.

With CASTOR, we seek to directly address this multi-domain hazard through a mechanism to relay high
level trust assessments alongside the data itself when it traverses domain boundaries (e.g., via the CISP).
The diagram below illustrates this improved scenario, where trustworthiness indicators associated with
data from different originating zones become visible to consuming domains. This newfound transparency
in data provenance allows receiving domains to intelligently weigh their decisions, prioritize actions, and
more effectively reconcile potentially conflicting information.

Figure 8.8: Exchanging trust assessments with data can improve operational security and efficiency

The following scenarios focus on LAN, campus, and cloud routers - the critical path for U-space surveil-
lance traffic.

8.2.6 Reference Scenario 1 User Stories

A Skyler radar unit at a major airport is scanning the airspace, detecting all aircraft and UAVs in its range.
The radar identifies a rogue drone flying near restricted airspace, potentially heading toward a busy flight
corridor or an aircraft approach path. The radar relays real-time tracking data to the local CISP. From
here it is observed by the site USSP from where the operator is alerted to the presence of the rogue

CASTOR D2.1 Public Page 119 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

aircraft. This data is mission-critical - delayed or tampered information could allow the rogue drone to
evade detection or cause a serious safety incident near passenger aircraft.

In today’s deployments, if a router is unknowingly compromised and silently drops or delays surveillance
traffic, the issue is often detected only indirectly when the USSP notices missing updates or the TCP
session stalls. Operators must then investigate manually, and the time to isolate the faulty router and
restore a clean path is dominated by human procedures rather than network mechanisms. CASTOR’s
value proposition is that it detects trust degradation at the infrastructure layer and restores compliant
routing automatically.

8.2.6.1 CA.US1a – Nominal Operation

CA.US1a - Nominal Operation

As the airport surveillance radar publisher, I want my continuous observation stream delivered to the
on-site CISP over a local path that satisfies my {Performance, Availability} needs, so that the USSP
presents untampered, real-time tracks of detected UAVs.

User Story Confirmation

The radar establishes a https connection to the CISP and is allocated a session to authenticate and
subsequently receive broker endpoints and topic mappings. The radar will connect to the endpoints
using the MQTT protocol and exchange structured JSON messages representing radar state, ADS-B
detections, tracks, heartbeats, and health. A demonstration USSP Console will visualise detections and
highlight those that do not correspond to known aircraft. Each detection will have associated visual cues
to relay the trustworthiness of the detection.

User Story Workflow

In Figure 8.9, we see a high-level flow of normal data exchanges between a co-located radar and CISP
node. Data is published to the CISP node by the radar and then consumed by a USSP which continuously
analyzes the data stream. If the USSP observes a detected object that it does not have in its approved
inventory, then it generates an alert to notify the operator.

Figure 8.9: Normal behaviour without CASTOR

CASTOR D2.1 Public Page 120 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

In Figure 8.10, we see an example of a router being manipulated to drop a key data stream so that the
USSP never observes the threat and raises an alarm. The Black Hole represents the dropping of data
(such as redirecting to /dev/null).

Figure 8.10: Attack behaviour without CASTOR

Although we depict the example of a router manipulation, a similar scenario unfolds in the event of other
attack types, router malfunctions or link issues that would also result in the USSP being starved of key
intelligence originating from the site radar.

Reference Values
CASTOR is not involved in this user story – this is verification that the system operates without CASTOR.
The purpose is to capture baseline measurements of latency, jitter, and resource usage under controlled
lab conditions. These results form the ground truth against which CASTOR-enabled scenarios (CA.US1b,
CA.US1c) will later be compared. The figures provide a reference snapshot of how the system performs
in its unmodified state. Subsequent user stories will focus on the relative change introduced by CASTOR
mechanisms such as router attestation and trust-aware routing.

Table 8.7: Reference Values for Use Case 1, Scenario 1

Measurement Description Value / Scenario
Base latency Radar → CISP, including campus routers & virtual

switches)
Average and 95th percentile
one-way delay. To be gathered
and serve as ground-truth path
delay (Typical zone production
target < 100ms)

Base Jitter p95Latency – p50Latency (Typical zone production target
≤ 10ms)

Base-CPU / memory Mean vCPU % & RAM per vRouter To be gathered and serve as
ground-truth resource
consumption

These baseline measurements carry no pass/fail criteria. Subsequent user stories will introduce ∆-
KPIs. We believe this approach is sensible for evaluation in a lab environment which cannot hope to
accurately reproduce a fully dimensioned real-world deployment. Evaluation of CASTOR should not rely
on faithfully duplicating such a deployment with all the physical distances and heterogeneous vendor
equipment involved. Rather, we want to focus on identifying the potential overhead that CASTOR could
incur and observe whether such overhead could be reasonably subsumed into a commercial deployment.

CASTOR D2.1 Public Page 121 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

8.2.6.2 CA.US1b – Performance/Integrity Degradation

CA.US1b – Performance Degradation

As the radar surveillance application, I want my data stream to be automatically rerouted whenever the
path’s latency or integrity conditions fall below the SSLA, satisfying my {Performance, Availability,
Integrity} needs, so that data destined for the USSP remains fresh and accurate.

User Story Confirmation

In a CASTOR-enabled deployment, the application flow remains the same as US1a: the radar performs
its brief HTTP bootstrap with the CISP to obtain broker details/credentials, then publishes surveillance
data to the same topics. The difference is that, in parallel, the site operator has provisioned an SSLA with
CASTOR, and domain routers periodically emit ATL reports. The Orchestrator continuously computes
end-to-end ATL for the active radar→CISP path and compares it to the route’s RTL thresholds; while
compliant, no behaviour changes are visible to the applications.

If performance degrades (e.g., a hop’s ATL drops below RTL), the Orchestrator selects a compliant alter-
nate path and applies a network-level reroute. This underlay change is transparent to the radar and CISP:
broker endpoints, topics, and credentials are unchanged; the radar’s transport session is preserved. From
the USSP’s perspective, track updates remain fresh and continuous.

User Story Workflow

In Figure 8.11, we see how CASTOR will detect the compromised situation and immediately initiate
corrective actions to maintain the flow of critical data and ensures that operational integrity is maintained.

CASTOR KPIs

The following observational deltas describe the metrics to be measured during CA.US1b. They are
evaluation objectives used to characterise CASTOR’s runtime impact compared to the baseline conditions
established in CA.US1a. The intent is to verify that CASTOR’s trust-aware rerouting can preserve data
freshness and continuity while introducing minimal additional overhead.

Table 8.8: CASTOR KPIs for Use Case 1, Scenario 1, User Story 1(b)

KPI Definition Target Value
∆ Latency overhead Average latency with CASTOR minus the

average latency captured during operation
without CASTOR. Latency is measured Radar
→ CISP, including campus routers & virtual
switches)

≤ +5 %

∆ CPU overhead Percentage of computing resources required
at the router level for instantiating the
CASTOR TCB exposing all security functions
and trust extensions – CPU Resources% Base
per router.

≤ +10 % when
instantiating the CASTOR
TNDE as an “untrusted
app” without isolation (no
TEE equipped),
≤ +30 % TNDE artifacts
running isolated in
enclaves (with TEE)

∆ Bandwidth
Control-plane share

ATL reports + reroute messages as % of
data-plane bandwidth.

≤ 1%

CASTOR D2.1 Public Page 122 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

KPI Definition Target Value
Service-interruption

duration
Duration between the compromise of a router
(in a manner CASTOR is configured to detect)
leading to an SSLA violation and the moment
normal end-to-end data delivery resumes over
a compliant path. This includes CASTOR’s
detection latency and the subsequent reroute,
and is measured solely from the CISP’s
observation of surveillance-message arrival
times (no clock synchronisation required)

≤ 5s;

These measurements will help determine whether CASTOR maintains service continuity under transient
degradation conditions without incurring significant delay, loss, or resource overhead. In this user story,
latency is measured end-to-end across the data plane (Radar → CISP), independent of any control-
plane activity. The measurement tooling records the time of packet departure and arrival and remains
oblivious to whether a path switch has occurred. Accordingly, the observed latency represents the steady-
state performance of the network both before and after CASTOR performs a reroute, not the duration of
the reroute decision process itself. This ensures that any reported ∆-latency reflects only the intrinsic
characteristics of the forwarding path and not the orchestration or path reconfiguration mechanics.

Similarly, the vRouter CPU and memory overhead will vary depending on the number and type of active
trust mechanisms enabled in a given test configuration (e.g., attestation depth, reporting frequency, or
encryption scope). This overhead is therefore not expected to remain constant across all CASTOR exper-
iments. Where additional integrity verification or telemetry incurs measurable processing cost, the results
will help characterise the trade-off between increased resource utilisation and improved network trust-
worthiness. The objective is not to minimise CPU consumption in isolation, but to understand how much
computational overhead is acceptable to achieve stronger security assurance within realistic deployment
constraints.

The service-interruption duration metric captures the practical impact of an attack in which a router silently
drops or diverts surveillance traffic. In a non-CASTOR environment, such failures are detected only
through application symptoms (e.g., stalled TCP sessions or missing heartbeats), followed by human
investigation - often taking minutes or longer. Indeed, when spanning multiple domains this can take a
lot longer to coordinate. In contrast, CASTOR detects trust degradation at the network layer, triggers a
reroute, and restores data visibility automatically.

This metric therefore measures the entire “gap” seen at the CISP: from the moment the attack begins,
through CASTOR’s detection and SSLA evaluation, to the point where a compliant path is re-established
and new surveillance messages arrive. The publisher remains unaware during the attack; only the
consumer-side message arrival timestamps are required. The objective is not zero interruption - some
brief visibility loss is unavoidable - but a significantly shorter outage compared to traditional operational
processes.

8.2.6.3 CA.US1c – Trust Degradation Alert

Collins Aerospace use networks under the control and supervision of third party suppliers but also operate
as in independent network operator ourselves in the airports domain in which we deploy and manage
secure network backbones. From this perspective, our interest in CASTOR extends beyond users to
deployers. One aspect we would like to see offered by CASTOR is alerting to circumstances in the
network that CASTOR is uniquely positioned to identify and bring to our attention.

CASTOR D2.1 Public Page 123 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.11: Attack prevented from starving CISP of attack-revealing data

CASTOR D2.1 Public Page 124 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

CA.US1c – Trust Degradation Alert

As the NetOps engineer, I want to receive a timely alert whenever CASTOR removes a router from
a network path because its ATL falls below a flow’s RTL, satisfying my {Observability, Integrity}
needs, so that I can investigate and take remedial action before service degrades.

User Story Confirmation

CASTOR continuously (i) aggregates ATL Reports from routers, (ii) computes end-to-end ATL for the
radar→CISP flow, and (iii) compares it to the flow’s RTL. This runs under the applications, so the radar/-
CISP/USSP stack behaves exactly as in US1a/US1b unless intervention is required. When a router’s
trust posture significantly degrades (i.e., its ATL falls below the level needed to contribute to an SSLA),
CASTOR marks the path non-compliant and (as in US1b) may reroute to a compliant path to protect
mission-critical freshness. Independently of application symptoms, CASTOR raises a NetOps alert. That
alert is delivered via the Facility Layer interface and includes the router identity and domain along with
actions taken (e.g., router removed from path, reroute applied). This means NetOps is informed even
when we experience no visible impact due to rapid remediation, and the event is recorded for audit and
cross-correlation via the CASTOR Telemetry API.

User Story Workflow When we use the term ‘significant’ in Figure 8.12, then we refer to situations in
which the ATL of a router degrades from a point where that router could contribute to the satisfaction of
an SSLA to a point in which it cannot.

Figure 8.12: Significant ATL degradation results in operator notification

Note that even though we only focus on trust degradation alerts in Figure 8.12, there is also a continuous
stream of telemetry data being captured by the Service Orchestrator and exposed through the Telemetry
API that is available to the NetOps Engineer. This has been described in Chapter 6.

CASTOR KPIs

The purpose of this user story is to ensure alerts are generated and relayed onwards appropriately in
a timely manner. This enables network engineering staff to observe and respond to trust weakening
activities in the network while also feeding into key audit trails maintained by network engineering to
perform meta analysis and correlation. The key observability targets we have identified are listed in Table
8.9.

CASTOR D2.1 Public Page 125 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 8.9: CASTOR KPIs for Use Case 1 - User Story 1(c) NetOps Alerting

KPI Definition Target Value
Alert-delivery latency Time from router downgrade decision to

receipt of alert by the NetOps monitoring
system

< 400ms (does not
include Global TAF
calculations)

Alert accuracy Qualitative measure of how reliably CASTOR
alerts reflect genuine, tested trust-degradation
scenarios. This entry does not claim coverage
of all attack types; it applies only to the specific
lab-tested cases to be documented in the test
plan.

Qualitative goal: alerts
should accurately reflect
genuine degradations in
tested scenarios while
minimising false flags.

ATL Report Freshness
Time to detect events-of-interest causing trust
level reduction (ATL < RTL) and their
subsequent sharing to the Global TAF for
further processing

Typical ≤ 400ms

NOTE: As detailed in the core trust assessment challenges in Chapter 4,
such hard timing constraints may not be sufficient for on-the-fly trust opinion
calculations consdering also the time required for the collection of fresh
evidence. In such corner cases, the Global TAF needs to make a decision
(based on pre-configured policies) on whether to wait for fresh evidence
or converge to a trust decision manifesting on the trust-related information
received in a previous trust assessment epoch (increasing, of course, the
inherent uncertainty of the decision itself). This interplay between accuracy
and freshness of the trust evaluations constitutes a key dimension that will
be evaluated as part of the CASTOR Trust Assessment Framework.

Alert-accuracy figures refer only to the subset of tested trust-degradations (for example: firmware drift,
configuration tampering detectable via attestation, and selective packet blackholing) and the specific
attestation signals available in the experimental setup. They are conditional on the defined threat model
and instrumentation and do not imply exhaustive coverage of all attack vectors. The evaluation will report
true/false-positive and true/false-negative counts for each exercised scenario, together with discussion of
any observed false flags or benign events that triggered alerts.

8.2.7 Reference Scenario 2 User Stories

A radar in Zone A detects an unidentified aircraft flying at an unusual altitude and trajectory, potentially
posing a risk. Such an observation is relevant beyond surveillance Zone A – neighbouring zones will also
likely be interested as the aircraft may travel to their zones or the event may even lead into a wider picture
of concerning airspace activity across multiple zones. The radar data from Zone A is streamed to a central
CISP on the cloud from where a USSP responsible for the management of a neighbouring airspace
zone B consumes the observational data and assesses the risk and relevance of the observation. Upon
deciding that such an observation warrants concern, it alerts the airspace operator.

When sharing particularly sensitive data such as radar capabilities and current performance metrics with
third parties, the operator would like to know that the network path is trustworthy and would like to be
made aware of any significant drops in trustworthiness – even if just temporary – so that it can refrain from
transmitting such data until trust is (re)established. Observational data such as aircraft track detections
are crucial to share with neighbouring zones regardless of whether a trustworthy path can be achieved
or not. In the event that the path is not trustworthy, the operator would ideally like to relay this information
with the observations so that neighbouring zones consuming such data can make informed decisions.

CASTOR D2.1 Public Page 126 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

When consuming data originating from a different provider, an airspace zone B would like some insight
into the quality and trust provenance of this data. In the case of radar detections, it would like to know
how reliable the measurement was by getting into some insights into the current health of the radar – a
key insight that may radars regularly report. In addition, the operator would like to know the network path
trust provenance of the observational data recorded by neighbouring zones.

To address these challenges of trust-dependent sharing of radar capabilities and trust-weighted observa-
tional data, we rely on the availability of a tiered SSLA capability in CASTOR. We would like a ‘maximum
trust SSLA’ in which the integrity of all routers in the network path must be of a very high level. When
this SSLA is being satisfied, then we can confidently transmit highly sensitive data such as radar capabil-
ities and dynamic radar performance. When this link-level high trust SSLA, cannot be achieved then we
would like a ‘minimum-trust SSLA’ as a fallback. For this SSLA, we are not overly concerned with indi-
vidual router integrity – we just want a performant network path overall that can accommodate the typical
SLA metrics in terms of throughput, latency, etc. When this SSLA is in effect (due to the maximum-trust
SSLA not being currently achievable), then the radar application will suspend sending the highly sensitive
radar capabilities and performance metrics but continue sending the airspace observations. By including
insights into the trustworthiness of the network path in effect with the observational data, the ultimate
consumers of such data can adopt calibrated reaction strategies.

8.2.7.1 CA.US2a – Baseline consumption (blind trust)

CA.US2a – Baseline consumption (blind trust)

As USSP B in Zone B, I ingest radar observations from neighbouring zones via the shared CISP over
a network path that is lacking {Provenance} trust metadata, so I must treat all sources as equally
reliable.

User Story Confirmation

Zone A’s radar (and any other producers) publish surveillance observations to the CISP under area-
of-responsibility (AoR) topics (e.g., . . . /obs/aor/region/sector/class). After a brief HTTPS bootstrap to
authenticate and discover the AoRs relevant to its airspace, USSP B subscribes by AoR, not by publisher
identity. The origin (zone/site/sensor) is carried in each message. No provenance stream is used in this
baseline, and no CASTOR overlay is present.

Upon receipt, USSP B decodes and validates the structured surveillance messages, then performs its
normal filtering/fusion and freshness checks to maintain a live track picture and trigger standard alerts
(e.g., ”unknown” by local rules). Because no trust provenance accompanies the feed, USSP B does no
weighting by path trust and bases decisions solely on content quality and timeliness. This establishes the
blind-trust baseline against which the CASTOR-enabled US2b will be compared.

User Story Workflow

In Figure 8.13, we depict surveillance observations in Zone A being published to a central, shared CISP
from which a USSP in Zone B consumes. Although not depicted, the situation is similar for a USSP
in Zone A consuming surveillance observations originating in Zone B. Indeed, there may be multiple
neighbouring surveillance zones publishing and consuming data through a central, shared CISP. In all
cases, data is published to the CISP without any trust provenance indicators leaving each surveillance
zone ignorant of any dynamic trust changes that may have occurred in the neighbouring zones and unable
to consider and reflect any such trust changes in its overall surveillance analysis.

Reference Values

In common with CA.US1a, CASTOR is not involved in this user story. The purpose here is to record base-
line communication characteristics between neighbouring zones so that the CASTOR-enabled scenario

CASTOR D2.1 Public Page 127 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.13: Zone B has no insights into the trust provenance of data consumed from the CISP

(CA.US2b) can later be compared under identical lab conditions. The following are reference observation
targets to be collected from the live system. They do not represent pass/fail criteria, but serve as a per-
formance baseline for assessing CASTOR’s overhead and benefits. These measurements are presented
below in Table 8.10

Table 8.10: Reference Values for Use Case 1, Scenario 2

Measurement Description Value / Scenario
Base latency Average and 95th-percentile one-way delay

(Zone A Radar → Zone B USSP), excluding
any processing delay inside the cloud-hosted
CISP. This reflects only the inter-zone
transport and campus routing, which are the
elements affected in later CASTOR-enabled
scenarios.

To be gathered and serve
as ground-truth path
delay. Typical inter-zone
target < 100 ms

Base jitter p95 - p50 of (Zone B USSP packet arrival -
Zone A Radar packet departure)

Variability reference for
∆-jitter

Base throughput Msgs/s and kbps of Radar stream Establish maximum
attainable throughput
without CASTOR

These measurements provide a neutral reference of data-plane behaviour and inter-zone latency before
any CASTOR components or provenance extensions are introduced. They allow later CASTOR-enabled
runs to be expressed as relative deltas (e.g. ∆-latency, ∆-loss, ∆-CPU) rather than absolute targets.
The objective is not to validate system performance against operational SLAs, but to quantify the natural
variation that occurs in a blind-trust environment so that CASTOR’s influence on delay, jitter, and reliability
can be properly assessed.

Inter-zone latency in this baseline reflects only the underlying network and cloud topology, without CAS-
TOR involvement. The lab constrains latency to realistic operational ranges so that later CASTOR-
enabled scenarios can be expressed as relative deltas rather than absolute WAN requirements.

8.2.7.2 CA.US2b - CASTOR tier enforcement (network side)

The system being considered spans two separate administrative domains: Zone A with a radar applica-
tion, its own routing infrastructure and orchestrator, publishing data to a cloud-based CISP; Zone B with

CASTOR D2.1 Public Page 128 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

its routing infrastructure and orchestrator, and a USSP consuming data from the same cloud-based CISP.
Two SSLAs are registered in Zone A for the radar application:

• Default SSLA (high trust): Performance: latency/jitter/loss within tight bounds; Availability: ≥ 99.99%;
Integrity: all path hops must meet/ exceed RTL (ATL ≥ RTL per hop). With this SSLA in effect
we have the necessary condifentiality assurance in place to share sensor capabilities and health
observations to the CISP;

• Fallback SSLA (performance only): same targets for performance and availability. There is no
integrity target included - no per-hop RTL requirement (trust not guaranteed). With this SSLA in
effect, we do not have the necessary confidentiality assurance in place to share radar health and
capabilities data with the CISP.

When the fallback SSLA is in effect, CASTOR should periodically recheck if the default SSLA can be
restored. The objective is to maximize the percentage of time that the network path satisfies the default
SSLA. The radar’s active SSLA is published and updated in realtime as appropriate such that it can be
interrogated by the radar application. The radar publishes the current trustworthiness of the network path
(as reflected by the SSLA in effect), and any subsequent changes, to a dedicated provenance topic on
the CISP. This topic is subscribed to by consuming USSPs so they can be made instantly aware of the
current network trustworthiness of the arriving data.

CA.US2b - CASTOR tier enforcement (network side)

As the Zone B USSP, I examine the trust indicator associated with all zone A surveillance obser-
vations that I consume from the CISP. The Zone A radar is initially provisioned by CASTOR with
a network path satisfying the default SSLA with high {Performance, Integrity, Availability, Confi-
dentiality and Provenance} needs resulting in a Trust Indicator of High being associated with each
observation. An event occurs in Zone A routing infrastructure resulting in the default SSLA no longer
being able to be satisfied and the CASTOR orchestrator identifies a path that can satisfy the fallback
SSLA. The change in SSLA is observed by the radar application and the Trust Indicator associated
with outgoing observations is downgraded to Low. The change in Trust Indicator is immediately ob-
served by the USSP in zone B.

User Story Confirmation

The system spans two domains: Zone A publishes radar observations to a cloud CISP (AoR topics);
Zone B’s USSP subscribes to those AoR feeds. In parallel, Zone A’s radar subscribes to CASTOR’s Trust
Exposure Layer for its flow. While the Default SSLA holds, CASTOR attests a HIGH trust state for the
radar→CISP path. The radar relays CASTOR’s path-trust assertion to the CISP provenance topic for that
flow (e.g., prov/flow/{flow-id}/pathtrust) declaring TI=HIGH over a configurable validity window.

A routing event in Zone A degrades integrity below RTL. CASTOR flips the SSLA to Fallback and, as a
registered consumer of such an event, notifies the Radar application of the change in SSLA. The radar
associates the change in SSLA with a low integrity network path being in operation and publishes this
update to the same provenance topic on the CISP. The radar, now being aware that it is transmitting on a
path without the confidentiality assurance of a high integrity path, suspends transmission of radar health
and capabilities data to the CISP until the high integrity SSLA can be restored, but continues to transmit
surveillance observations uninterrupted to the same AoR topics.

USSP B, already consuming observations, also consumes the flow’s provenance stream and weights
each observation by the current trust window (HIGH → full confidence, LOW → reduced weight). When
CASTOR later restores the Default SSLA, a fresh HIGH assertion is published; USSP B returns to full-
confidence processing without any change to topics or application wiring.

User Story Workflow

CASTOR D2.1 Public Page 129 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

In Figure 8.14, we depict the sequence of actions we envisage to provision a dual SSLA scenario in which
we can fallback to use of a lower integrity path in the event that our preferred high integrity path cannot
be provisioned for a period of time. The SSLA that is currently in effect for the Radar application can
be queried from the CASTOR Trust Exposure Layer. An application can subscribe to the Trust Exposure
Layer to be notified of changes to the SSLA associated with the application’s network path. Knowledge of
the SSLA in effect, enables the application to adapt its behaviour according to the known trustworthiness
of the network path.

Figure 8.14: Zone B now has insights into the trust provenance of data consumed from the CISP

CASTOR KPIs

Here we have two key objectives. The first is to measure the overhead imposed on our deployment
model by the use of CASTOR. To this end we establish baselines through measurements of latency,
message loss (if any), jitter and throughput. Our second objective is to assess the performance of SSLA
switching in response to observed trust degredation in the network routers. The indicative observation
targets presented in Table 8.11 are used to characterise CASTOR’s effect and responsiveness under
controlled lab conditions. They are not success criteria, but reference points for comparing performance
and behaviour across runs.

Table 8.11: CASTOR KPIs for Use Case 1, Scenario 2, User Story 2(b)

KPI Definition Target Value
∆ Latency Overhead

(cross-domain)
Change in end-to-end latency (p95 receive at
USSP B - send from Radar A) compared with
baseline.

≤ 5% increase on
baseline measured in
nominal user story

∆ Loss Overhead Additional message loss compared with
baseline

≤ 0.05% increase on
baseline measured in
nominal user story

CASTOR D2.1 Public Page 130 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

KPI Definition Target Value
∆ Jitter Overhead (p95 - p50) E2E delta versus baseline ≤ 5% increase on

baseline measured in
nominal user story

∆ Throughput
Overhead

Change in sustained message rate (msgs/s or
kbps) compared with baseline.

≤ 1% decrease on
baseline measured in
nominal user story

End-to-End Tier
Change Propagation

Time

Time from CASTOR’s internal SSLA flip
decision (tflip) to the point at which the USSP
has applied the new trust tier in its data-fusion
logic (tapply). This captures CASTOR
detection, orchestration, publisher update, and
consumer reception as a single observable
interval.

p95 ≤ 200 ms (lab
environment - assuming
no need for optimizer
involvement).

Tier oscillation rate We would like to avoid the scenario in which
an intermittently faulty router or link results in
yo-yo effect between default and fallback
SSLAs resulting in excessive adaptation costs.
We expect some form of hysteresis to be in
place to limit this.

≤ 1 per 10 minute

The Tier Change Propogation Time measurement quantifies the total duration between CASTOR de-
tecting a trust degradation and the USSP applying the new tier - effectively measuring CASTOR’s re-
sponsiveness and end-to-end coupling to the application layer. This also serves as an implicit qualitative
measurement of the integration effectiveness between CASTOR and a third party application.

The Oscillation Rate measurement ensures that the system does not over-react to transient conditions
such as a faulty router. Genuine cascades of trustworthiness issues may well require frequent tier oscil-
lating. This cannot be avoided as CASTOR has to adapt to the circumstances it is faced with. What we
have in mind is, in particular, a router that is regularly exhibiting an intermittent fault over short intervals.
We would expect some form of dwell timers to ensure continuous health windows before re-accepting a
previously quarantined router.

8.2.7.3 CA.US2c - Receiver-side trust interrogation

This use case approaches the issue of SSLA conformance from a different perspective. We work with
surveillance equipment from a variety of vendors and not all can be immediately updated to query and act
on current trustworthiness assessments. Every time new interfaces and capabilities are introduced into a
complex multi-vendor ecosystem then we need to be able to accommodate a period of transition in which
legacy applications continue to operate uninterrupted. To accommodate this eventuality, we investigate
updating the receiver side (the CISP in our case) to query the trustworthiness provenance recorded in
the originating domain of the client data. The CISP is modified to query the Trust Exposure layer and
subscribe to updates so that it can dynamically categorize incoming data before it is streamed onwards
to consumers.

CASTOR D2.1 Public Page 131 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

CA.US2c - Receiver-side trust interrogation

As the Zone B USSP, I examine the trust indicator associated with all zone A radar observations that
I consume from the CISP. Through CASTOR interaction, the CISP is aware of the trustworthiness
of published data and relays this information to the Zone B USSP, I observe this indicator when I
consume the data from the CISP node.
An event occurs in Zone A routing infrastructure resulting in the desired SSLA no longer being satisfi-
able and the CISP is notified of the updated trust values associated with the network path according to
the {Observability, Provenance} requirements we expect CASTOR to satisfy. The CISP observes
that the integrity constraint is no longer being satisfied and tags all surveillance data with a Trust In-
dicator of Low. The change in Trust Indicator is immediately observed by the USSP in zone B. This
remains in effect until network conditions change and the orchestrator is able to re-establish a path
satisfying the high levels of integrity laid down in the radar Default SSLA.

User Story Confirmation

When Zone A’s radar establishes a session with the CISP, the CISP immediately queries the Trust Ex-
posure Layer for the radar’s application flow to determine the current SSLA tier / Trust Indicator and
registers for change notifications. The radar then publishes its observations to the usual AoR topics
(payloads unchanged). The CISP, having the flow identity from session setup, annotates the stream out-
of-band by publishing a provenance message to the flow’s provenance topic (e.g., cisp/v1/prov/flow/{flow-
id}/pathtrust) that tracks the current Trust Indicator for that flow.

If the network SSLA changes (e.g., Default→Fallback), the Trust Exposure Layer notifies the CISP, which
immediately publishes an updated provenance message for the same flow. USSP B, already subscribed
to AoR observations, also subscribes to the provenance topic and weights incoming observations ac-
cordingly—without any changes to the observation payloads or topic structure.

User Story Workflow

In Figure 8.15, we present the flows involved when the CISP (on the data receiver end) takes ownership of
querying the provenance of an incoming data stream by reaching out to the Trust Awareness Layer using
the id provided by the application during session creation. The objective is to get the trust properties
associated with the network through through which the data from the radar is reaching the CISP. We
progress through the situation in which the trust properties associated with the incoming data stream
change at some point resulting in the CISP having to update its classification scheme.

CASTOR KPIs

As in CA.US2b, the emphasis remains on the responsiveness and stability of CASTOR’s propagation of
trust-state changes. Here, the additional element is that the CISP acts as an intermediary: it queries
CASTOR’s Trust Exposure Layer and relays the resulting trust update to downstream consumers (e.g.
USSP B). We therefore retain only the End-to-End Tier Change Propagation Time metric, but extend its
scope to reflect this receiver-side chain. This is captured in Table 8.12

CASTOR D2.1 Public Page 132 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.15: Instead of applications tagging with trust indicator, receiver can query origin trustworthiness

Table 8.12: CASTOR KPIs for Use Case 1, Scenario 2, User Story 2(c)

KPI Definition Target Value
End-to-End Tier

Change Propagation
Time (cross-domain)

Time from CASTOR’s internal SSLA flip
decision (tflip) to the moment the downstream
consumer (USSP B) recognises and applies
the new trust tier (tapply). This measurement
now spans CASTOR’s notification to the CISP,
the CISP’s publication of the updated
provenance message, and its consumption by
the USSP. It therefore captures cross-domain
propagation delay between network, receiver,
and consumer.

p95 ≤ 300 ms (lab),
acknowledging additional
inter-domain signalling
compared to CA.US2b.

This measurement demonstrates that CASTOR’s trust-state transitions remain visible and timely even
when propagated via a CASTOR-aware intermediary (the CISP) rather than the original publisher. The
small relaxation of the indicative goal (from ≤ 200 ms → ≤ 300 ms) reflects the extra messaging steps
between domains. Success in this test confirms that CASTOR’s trust-awareness can be extended to
legacy or third-party systems without modifying existing data producers.

It is important to note that inter-domain network latencies - particularly those arising from internet or
carrier backbones between Zone A, the cloud CISP, and Zone B lie outside the control of CASTOR.
The indicative propagation target of 300ms includes headroom to absorb such variability in the lab. In
a real deployment, these latencies would be dimensioned, monitored, and engineered through separate
network-planning processes. CASTOR’s responsibility is limited to ensuring that trust-state changes are
propagated promptly across the available infrastructure; it cannot compensate for under-provisioned or
highly variable inter-domain transport paths.

CASTOR D2.1 Public Page 133 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.16: The big picture of C-Roads topology of European C-ITS systems

8.3 Trustworthy Communications of First Responder Mobile Units
and the Compute Continuum

First responder units operate in highly dynamic and safety-critical environments, where uninterrupted
secure communication and trustworthy system behaviour are essential. To maintain this trust, onboard
units (OBUs) must frequently obtain updated security credentials from a Public Key Infrastructure (PKI)
and stay current with firmware delivered via Over-the-Air (OTA) mechanisms. These procedures are
foundational prerequisites for ensuring that any subsequent V2X communication performed by the ve-
hicles—such as signing or verifying messages—is based on uncompromised software and fresh cryp-
tographic credentials. Unlike conventional automotive systems that rely on extensive OEM backend in-
frastructures, first responder OBUs are compact, lightweight devices used by various authorities and
deployed across heterogeneous operational contexts. Their mobility and large geographical coverage
expose them to untrusted or partially transparent mobile network segments, which increases the impor-
tance of secure backend connectivity.

In this CASTOR use case, the focus is on securing the backend trust chain required to support these
operations, specifically the communication paths between the V2X Application Server and the PKI/OTA
servers. The use case captures scenarios in which OBUs must retrieve certificates or firmware through
a V2N2V workflow, where the “N” represents potentially diverse and cross-domain network infrastruc-
tures. CASTOR introduces mechanisms to establish verified, high-integrity network paths across these
infrastructures, ensuring that backend communication remains protected even when traversing multiple
operators or administrative domains. This is particularly significant for first responder deployments, where
agencies often rely on networks owned by different public or private entities, and where trust cannot be
assumed merely because standard encryption exists. Cross-domain trust provisioning—supported by the
CASTOR Trust Exposure Layer and orchestrator interactions—ensures that each domain can advertise
its trust capabilities, allowing secure routing decisions to be made end-to-end.

By orchestrating trusted, policy-compliant, and dynamically monitored paths for certificate and update
delivery, CASTOR ensures that backend operations remain robust against integrity breaches, delay, or
malicious interference. As a consequence, the OBUs maintain fresh certificates, validated software, and
updated security configurations—establishing the foundation upon which trustworthy V2X communica-
tion is later performed in real-world first responder scenarios. While message types such as CAMs and
DENMs are not directly in scope for this use case, their credibility and authenticity in field operations de-
pend entirely on the integrity and trustworthiness of these backend processes that CASTOR strengthens.

Defining mechanisms to enable performance and trust between first responders’ mobile units and the

CASTOR D2.1 Public Page 134 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

compute continuum is a primordial goal of CASTOR, while first responders may be operated under differ-
ent policy regimes and governed by different authorities.

The use case demonstration is split into the following two categories, which can be considered the
archetype of many related use cases:

• UC 2.1 Digital certificate download for secure V2X communication.

• UC 2.2 Over-The-Air (OTA) firmware update of security-sensitive communication devices.

Both UCs are based on V2X communication, sharing a hybrid CCAM topology including diverse commu-
nication devices/technologies and mixed architectures. While not challenging in terms of performance
(latency and throughput), they are demanding in the sense that they deal with (safety, security) sensitive
data where reliability and provenance of data (i.e., trustworthy sources) are primordial. Furthermore, one
needs to fit CASTOR’s technology solutions to an existing and standardised solution framework.

8.3.1 “As-is” Scenario

C-ITS networks integrate diverse computing platforms and technologies, such as Roadside Units (RSUs),
Onboard Units (OBUs, UEs), Aftermarket Safety Devices (ASDs), and other vehicular communication
endpoints and services. This represents a hybrid communication system whose specification is included
and has also been implemented and set up in several European countries in the framework of C-ROADS.
Figure 8.16 shows the big picture of the hybrid topology of C-ROADS.

The actual route/path of transmission of data packets in the network is built on a best-effort basis without
any specific requirements for the network. This means that no specific traffic engineering solutions are
required or need to be developed by either the network owner/operator or the C-ITS applications to
transmit the data. The end-to-end communication topology of ITS service access in V2X communication
systems from the perspective of a V2X service provider is shown in Figure 8.17. The figure also focuses
on the two services in the V2X vertical that the scenarios will rely on, namely a Public Key Infrastructure
(PKI) backend and an OEM server issuing Over-the-Air (OTA) updates.

Typically, the network requirements in standard C-ITS use cases are as follows:

• End-to-end latency: less than 80 ms

• Throughput: 15-20 kbps, with occasional maximum of up to Mbps range

• V2N traffic is generally transmitted using TCP/IP and optional application layer protocols (e.g.,
MQTT)

• For end-to-end communication requesting the ITS certificate, HTTP is used over TCP/IP. Usually, a
supplementary cryptographic layer, such as TLS, is also required.

8.3.1.1 UC 2.1: Trusted digital certificate download

The Cooperative Credential Management System (CCMS) secures communication of connected vehicles
and road infrastructure by managing digital certificates, in line with European certificate management
standards, regardless of the technology (ITS-G5 or C-V2X), based on bilateral trust between communi-
cation endpoints. CCMS provides primary mechanisms that support the management of trust across the
system. The V2X Public Key Infrastructure (PKI) is the physical implementation of the CCMS policy.

One element of trustworthy C-ITS communication is to obtain certificates for secure communications from
a trusted agent in a trustworthy way. During vehicle operations, they periodically request and receive

CASTOR D2.1 Public Page 135 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

messages (certificates) and decide whether to trust those messages based on the PKI ruleset. The
ruleset and access mechanism must comply with the standards and guidance of key European entities,
including the EC, ETSI, Car2Car, and C-ROADS.

By using certificates, one can affirm that a communication endpoint has met stringent security require-
ments, which may include:

• Physical security requirements: Measures to protect the physical integrity of communication devices
and infrastructure (host)

• Cybersecurity requirements: Specifications for host processors, operating systems, key manage-
ment, and cryptographic protocols.

• Certification content: Processes to justify the entitlement of endpoints to particular contents in their
certificates (e.g., an emergency responder’s ability to perform emergency alert broadcast, etc),
jurisdiction.

E2E message integrity is ensured by means of cryptographic techniques; however, the successful certifi-
cate update may be compromised (delayed or temporarily limited, or blocked) in a hostile environment.

CCMS secures the semantic correctness of the reception of trusted contents, but not the trusted path of
the data access.

The focus of this scenario is on the periodic communication between OBU-equipped vehicles and the
backend Public Key Infrastructure (PKI) to issue short-term anonymous credentials (pseudonyms) for the
secure and privacy-preserving exchange of Cooperative Awareness Messages (CAMs).

8.3.1.2 UC 2.2: Over-The-Air (OTA) update of security sensitive communication devices

This scenario focuses on remote asset management and control of responders by transmitting special
codes and commands and software/firmware updates from the backend in a V2N2V scenario. Today,
over-the-air (OTA) updates for responder fleets are typically handled by vendor-specific backend systems
that push software or firmware packages to vehicles over standard IP-based communication channels.
Solutions such as RAUC, Mender, or custom-built update frameworks manage the packaging, verifica-
tion, and installation process on the device side. These systems generally rely on the public internet or
cellular networks using standard transport protocols (typically HTTPS over TCP) and do not perform any
network-level manipulation of the traffic. There is no traffic steering, path selection based on trust level,
or adaptation to varying network conditions beyond what the underlying transport protocols inherently
provide (e.g., TCP retransmissions). Update delivery is usually best-effort, meaning that failures or inter-
ruptions are retried at the application layer, and the system must wait for the next connectivity window to
resume. There is limited integration with PKI or security orchestration beyond verifying digital signatures
of the update payload, and no mechanism for routing updates through specific trusted nodes or dynam-
ically reconfiguring paths in case of partial network outages. As a result, while current OTA solutions
are functional, they do not exploit network-level intelligence to optimize delivery performance, guarantee
timeliness, or adapt to degraded trust conditions — all of which are in scope for CASTOR.

8.3.2 System Model and Communication

The system architecture for the emergency responder use case builds on established V2X entities and
services, integrating vehicles, backend systems, and supporting network infrastructure. Core compo-
nents include responder vehicles equipped with on-board units (OBUs), backend servers for OTA update

CASTOR D2.1 Public Page 136 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

management, and the Public Key Infrastructure (PKI) providing enrollment, issuance, and revocation ser-
vices. A V2X service provider’s backend gateway to OEM servers and other supplementary services is
the V2X Application Server, supporting communication based on V2N and V2N2V interactions. These
interactions typically use cellular or broadband IP connectivity, secured through TLS-based protocols for
OTA delivery and certificate renewal. Together, these components form the basis for secure software life-
cycle management and resilient identity provisioning, enabling emergency responders to maintain opera-
tional trustworthiness in dynamic and potentially degraded environments. In Figure 8.17, we summarize
these key system components and relations, described in more detail in the following subsections.

Figure 8.17: End-to-end communication topology of vehicles and C-ITS service access

8.3.2.1 System components

The typical system components of the described V2X use cases are the following (focusing on the UC2
perspective):

• Vehicle On-board Unit (OBU) - The OBU is the in-vehicle communication and processing platform
that enables V2X services and secure connectivity to backend systems. It typically integrates one
or more communication modems to support cellular and short-range (ITS-G5 and/or C-V2X) con-
nectivity, a processing environment for running V2X applications, secure storage for cryptographic
material, and interfaces to the vehicle’s internal systems (e.g., via CAN bus). In the emergency
responder use case, the OBU is responsible for receiving and validating OTA updates, managing
PKI certificates, executing secure communication via the V2X Application Server, and ensuring that
only authenticated and authorized commands affect the vehicle. It serves as the trusted execution
point for network and security functions inside the vehicle.

• 5G network - 5G networks act as a key enabler for enhanced V2N2V communications by combin-
ing high throughput, low latency, and high reliability with programmable interfaces for service-aware
networking. Unlike legacy systems, 5G not only improves communication performance but also
exposes APIs for advanced functionality such as Quality on Demand, traffic steering, and network
slicing. This combination allows emergency responder services to obtain both the capacity and
flexibility needed for mission-critical operations. Typical V2N use cases include backend-assisted
cooperative awareness, collective perception, and traffic efficiency services. In the emergency re-
sponder scenario, 5G also provides the secure and timely connectivity required for OTA software
updates and PKI certificate renewals, ensuring vehicles remain trustworthy and operational while
in the field.

CASTOR D2.1 Public Page 137 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

• V2X Application Server (AS) - The V2X Application Server acts as the central interface be-
tween vehicles and backend services. It mediates secure and optimized V2N2V communications
for cellular-enabled clients, supporting enhanced V2N message routing mechanisms and broaden-
ing the horizon for safety-enhancing services (e.g., by connecting pedestrians via cellular). With
tighter integration to 5G core networks, it can manage advanced 5G features for clients, such as
Quality-on-Demand via available 5G APIs. Additionally, the V2X AS can work as an application
gateway, interfacing with different application domains and services. Specifically for UC2:

– It is the primary application gateway for V2X clients to the CASTOR domain, handling service
registration and application-level status monitoring.

– It acts as the vehicle’s interface to the EU PKI trust infrastructure. Through secure V2N com-
munications, it mediates interactions with the PKI by handling certificate enrollment requests,
renewals, and revocation checks on behalf of the responder fleet.

– It serves as the interface between vehicles and the OTA server, mediating update requests,
secure delivery, and status reporting over V2N communication channels.

• EU PKI - In the V2X ecosystem, the EU PKI provides the trust anchor for secure communication
by managing the lifecycle of digital certificates used for authentication, authorization, and message
integrity. Its functions include the issuance of enrollment and authorization certificates, renewal of
expiring credentials, and distribution of revocation information. By enforcing common security poli-
cies and cryptographic standards, the EU PKI ensures interoperability and trustworthiness across
manufacturers, operators, and national domains.

The interface with the V2X AS abstracts the complexity of the PKI from the vehicle side and en-
sures that updates to regulatory requirements or cryptographic policies can be applied centrally.
Importantly, any national or regional regulatory entity—such as a country-specific Security Creden-
tial Management System (SCMS) or trust authority—is reached through the same V2X Application
Server interface, ensuring a uniform communication path and compliance across jurisdictions.

• OTA server - The OTA server is responsible for managing the lifecycle of software and firmware
updates for the vehicle fleet, including packaging, version control, integrity protection, and secure
distribution. It ensures that updates are delivered reliably and verified before installation, maintain-
ing the operational readiness and trustworthiness of emergency responder vehicles.

Through the V2X AS as an interface, vehicles can receive updates from the OTA server without
needing to directly manage backend protocols or security policies. In the same manner, any other
OEM or third-party backend service can be connected to vehicles via the V2X Application Server,
providing a uniform and secure integration point for additional services such as telematics, diag-
nostics, or fleet management.

• Roadside Unit (RSU) - While not being directly involved in UC2, RSUs are a general part of C-ITS
systems. These devices are generally involved in safety use cases, performing as an interface to
smart-intersection infrastructure (sensors, traffic lights). The RSUs usually have a wired connection
and can interact with the V2X Application Server for additional functionality.

8.3.2.2 Communication protocols and interfaces

The foundation of Vehicle-to-Network (V2N) communication is based on the TCP/IP protocol stack. Com-
munication between the On-Board Unit (OBU) and the Vehicle-to-Everything (V2X) Application Server
can be achieved using RESTful HTTP APIs, which operate in a request/response format. Additionally,
MQTT is essential for transmitting V2X messages and potentially some control information. Data may

CASTOR D2.1 Public Page 138 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

also be streamed using UDP. For sensitive traffic, such as communications involving a Public Key In-
frastructure (PKI) server, it is important to implement additional security measures, such as SSL/TLS
encryption, to enhance safety.

The V2X Application Server acts as a gateway from various perspectives. Firstly, it serves as an intra-
domain gateway, facilitating V2N2V communication between different ITS stations, such as OBUs and
RSUs. Secondly, it serves as an inter-domain gateway for both the application and network layers. On
the application layer, the V2X AS connects ITS stations to various services within the V2X domain, such
as the PKI server and OEM servers (for example, to facilitate OTA updates). Additionally, on the network
layer, it can directly interface with various networks through APIs. This includes 3GPP systems for Qual-
ity of Service (QoS) management and other advanced features of 5G cellular systems, as well as the
CASTOR network, which ensures secure networking. Figure 8.18 illustrates the functional architecture
of hybrid C-ITS networks, highlighting the multi-interface role of the V2X AS.

Figure 8.18: Functional architecture of hybrid C-ITS network adopted to CASTOR

8.3.3 Scenario Needs from CASTOR

The emergency responder scenario imposes stringent demands on the CASTOR network, requiring that
over-the-air software updates and PKI certificate renewals be delivered reliably, securely, and on time.
Because these operations are critical for maintaining the safety and operational readiness of emergency
vehicles, the network must provide both robust performance and strong trust guarantees. This means
ensuring that data is transmitted without tampering (integrity), is protected from unauthorized disclosure
(confidentiality), and can be traced for forensic or compliance purposes (auditability). At the same time,
the network must meet key performance requirements: it must deliver updates quickly (throughput), re-
spond with minimal delay (latency), remain operational even under degraded conditions (availability),
and scale to handle updates for an entire fleet of responders without service degradation (scalability).
Together, these properties form the baseline for what the scenario expects from the CASTOR network.
Table 8.13 contains the detailed description of the properties of interest for UC2.

UC2 Network/Trust Properties of Interest
Name Description
Integrity Updates and PKI data must not be tampered with in transit.
Confidentiality Sensitive data should not be visible to unauthorized parties to protect intel-

lectual property and system configuration details.

CASTOR D2.1 Public Page 139 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Auditability/Traceability All network transactions should be logged for forensic and compliance pur-
poses.

Throughput/Bandwidth The network must support a sufficient data rate to deliver updates within
the required time frame. OTA updates may be large (hundreds of MB), and
emergency responders may need them quickly to stay operational.

Latency The time between request and (at least the initial/partial) response must be
low enough to avoid service disruption. This is especially relevant for PKI
certificate renewals, where delays could block communications.

Availability/Uptime The network should remain reachable with high probability. Emergency re-
sponders must be able to receive updates or reach other services even
during disasters or degraded infrastructure scenarios.

Scalability The network must support simultaneous update sessions for many vehicles
without congestion collapse. Large fleets may need updates at once (e.g.,
security patch rollout).

Table 8.13: Network and Trust properties as service-level objectives

8.3.4 To-be Reference Scenario 1: Connectivity to V2X PKI over cross-domain
path provisioning

In the CASTOR-enabled environment, connectivity between the V2X Application Server and the PKI back-
end is no longer established through an unmanaged best-effort network, but through trust-orchestrated
and policy-compliant paths. When a certificate renewal or enrollment request is initiated, CASTOR en-
sures that the connection to the PKI—whether hosted in the same or a different administrative domain—is
established via network segments that meet the integrity, availability, and confidentiality guarantees de-
fined in the corresponding SSLA.

Each CASTOR domain exposes its verified trust capabilities through the Trust Exposure Layer, enabling
orchestrators in different domains to exchange trust semantics and dynamically compose cross-domain
routes. This ensures that even when the PKI is managed by a separate operator, the V2X Application
Server can rely on a continuously verified, end-to-end trusted communication channel.

Compared to the as-is scenario, where certificate exchanges rely on best-effort routing and unverified
intermediaries, CASTOR introduces:

• Cross-domain trust negotiation and validation, ensuring that both endpoints and intermediate nodes
meet defined SSLA criteria.

• Dynamic orchestration that continuously monitors path trust and performance, rerouting traffic if a
degradation or policy violation occurs.

• Integrated logging and auditability, providing traceable evidence of compliance with security and
service-level commitments.

Through these mechanisms, CASTOR transforms certificate management from a reactive, network-
agnostic procedure into a proactively secured and orchestrated trust service, ensuring that pseudonym
and authorization certificates are always issued and refreshed through managed, verified, and compliant
paths.

8.3.5 To-be Reference Scenario 2: OTA Updates over trustworthy paths

In the as-is landscape, OTA updates for emergency responder vehicles are delivered over public or cel-
lular networks using best-effort routing, leaving delivery time, integrity, and availability to chance. The

CASTOR D2.1 Public Page 140 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

CASTOR-enabled “to-be” scenario replaces this uncertainty with trust-aware orchestration and SSLA-
driven delivery control.

Before an update is initiated, CASTOR computes an optimal trusted path between the V2X Application
Server and the OTA backend, based on current network trust scores, integrity attestations, and perfor-
mance metrics such as available throughput and latency. Only nodes verified through remote attestation
participate in the update delivery, and all transmissions are continuously monitored for SSLA compliance.

During the update process, the CASTOR framework:

• Detects any degradation in trust or performance along the active path.

• Notifies the V2X Application Server through the Trust Awareness API, allowing it to pause or safely
abort the update if the path no longer satisfies the integrity threshold.

• Supports multiple SSLAs—for instance, a “main” SSLA with high throughput and integrity guar-
antees, and “fallback” SSLAs maintaining only integrity guarantees—to ensure that updates can
continue, when possible, under reduced network conditions.

This approach upgrades OTA updates from a best-effort, transport-layer-dependent service to a network-
assured and policy-compliant process. CASTOR thereby enables secure, verifiable, and timely software
distribution, aligning update delivery with the operational reliability and safety requirements of emergency
response fleets.

Figure 8.19: C-ITS service access enhanced by CASTOR

The architecture depicted in Figure 8.19 extends the baseline C-ITS topology by introducing a managed
network infrastructure layer between the V2X Application Server and backend services (e.g., PKI and
OTA servers). In contrast to the “as-is” scenario, where data flows traverse a fully transparent, best-effort
network, the CASTOR-enabled “to-be” setup relies on a network that is aware of trust and service-level

CASTOR D2.1 Public Page 141 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

semantics. While the detailed CASTOR components are abstracted in this view, the figure conceptu-
ally illustrates that communication paths are now provisioned through a partially managed and verifiable
infrastructure rather than through an opaque internet segment. This shift allows the C-ITS services to
operate over network segments that can enforce or monitor SSLA compliance, thereby enhancing the
reliability and trustworthiness of both OTA and PKI interactions.

8.3.6 Reference Scenario User Stories

UC2.US1 V2X Services with different requirement sets

As a V2X service provider, I want to be able to maintain optimal SSLAs for the different types of traffic
that can achieve specific {network, trust} requirements, so that I can ensure reliable service quality
for all applications.

User Story Confirmation

V2X services differ widely in their requirements: some are highly time-sensitive (e.g., safety-critical haz-
ard notifications), while others focus on reliable but less time-critical operations. Each of these service
types imposes distinct expectations on the underlying communication system in terms of latency, through-
put, availability, integrity, and trust. To ensure reliable service quality, these requirements must be sup-
ported independently, without one service type degrading the performance of another, and in parallel,
since multiple applications may be active simultaneously. For example, both an OTA update process
(UC1.US1a) and a PKI certificate renewal (UC1.US1b) require a trusted network for high integrity. An
OTA update typically involves the download of a large file (compared to, e.g., a V2X message), meaning
data throughput is one of the key requirements, while a certificate batch is much smaller in size.

The CASTOR framework addresses these challenges by enabling the definition, registration through ser-
vice provisioning, and enforcement of multiple SLAs or security-aware SLAs (SSLAs) tailored to specific
services. It provides mechanisms to select and maintain the most appropriate communication paths that
satisfy both network performance and trust guarantees, even under degraded or changing conditions. By
doing so, CASTOR helps service providers preserve optimal end-to-end quality for all V2X applications
while mitigating the risks of contention, misrouting, or trust erosion.

UC2.US1a Secure update delivery based on trusted network paths

As a V2X service provider, I want to be able to request an optimal network path with {high integrity
and moderate throughput} (that complies with the SSLAs) to the OTA server, so that I can ensure
secure and reliable OTA updates for my clients.

User Story Confirmation

Communication between the OBU, the V2X Application Server, and the OTA server typically relies on
secure, standards-based protocols such as HTTPS or MQTT over TLS. Control messages (e.g., update
availability checks, status reporting) are exchanged between the OBU and the V2X AS, while update
binaries and manifests are fetched from the OTA server.

Update packages are generally digitally signed to guarantee authenticity and integrity, following ap-
proaches used by frameworks such as RAUC, Mender, or Uptane. Transport-level encryption (e.g., TLS)
ensures confidentiality during transmission, while the content itself may optionally be encrypted if required
by the OEM or regulatory policy.

In conventional deployments, the network route between an OTA issuer (e.g., an OEM backend server)
and the receiving client (e.g., an OBU) traverses a largely unmanaged and heterogeneous environment.
Within such a landscape, the trustworthiness of intermediate nodes and links cannot be guaranteed,

CASTOR D2.1 Public Page 142 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

leaving the transmission vulnerable to interception, manipulation, or redirection. A successful man-in-
the-middle attack could lead to the delivery of maliciously modified update packages, potentially compro-
mising the safety, reliability, and regulatory compliance of responder vehicles. Even when payloads are
cryptographically signed, repeated delivery failures, denial-of-service attempts, or persistent corruption
of the transport path can prevent timely patching and increase operational risks.

While TLS provides end-to-end confidentiality and integrity of the transmitted data, it does not ensure the
trustworthiness or availability of the intermediate network path. Compromised or misconfigured nodes
may still intercept, redirect, or degrade traffic, creating operational and security risks beyond the scope of
transport encryption.

The CASTOR framework mitigates these vulnerabilities by enabling the establishment of trusted network
paths before software update delivery. Instead of relying solely on best-effort routing, CASTOR integrates
trust verification and path optimization into the orchestration process. This involves, for example:

• Remote attestation of network entities along candidate paths, ensuring that only verified and un-
compromised nodes participate in transmission.

• Dynamic trust scoring of nodes and links, based on software/hardware integrity, historical reliability,
or operator policies.

• Policy-based orchestration that selects a path exceeding a configurable trust threshold while still
satisfying required performance characteristics such as throughput and latency.

By combining these mechanisms, CASTOR ensures that OTA updates are delivered over paths that are
both trustworthy and performance-compliant, thereby reinforcing the reliability and security of the software
lifecycle in emergency responder fleets.

User Story Workflow

Figure 8.20 captures the flow of action concerning UC2.US1a. The service registration and SSLA nego-
tiation phase precedes the operational phase of the OTA service.

The OTA update procedure begins with the vehicle client (OBU) fetching any available updates from the
OTA server (step 1). The V2X application server, being the gateway to external C-ITS and OEM services,
acts as a proxy. This means all requests from the vehicle client are sent to the V2X Application Server,
which then relays incoming requests to the OTA server (step 1.1). The server responses are also relayed
back to the vehicle client (step 1.2). The client (OBU) evaluates the metadata and selects the correct
package from the list of available update packages selected for download (step 2).

When the update sequence is requested by the client (step 3), the V2X Application Server fetches the
current SSLA compliance (step 3.1). Depending on the status, two things can happen: the V2X server
can deny the update sequence if the SSLA compliance is violated (step 3.2.1), or proceed and forward
the download request to the OTA server (step 3.3). The OTA server then starts the data stream, and
the data chunks are forwarded to the client (step 3.3.1) until the last data chunk is sent (step 3.4) and
delivered (step 3.2.2). The client confirms the download (step 5) and can proceed with updating the
firmware offline.

CASTOR KPIs

The CASTOR KPIs for UC2.US1a are summarized in Table 8.14.

CASTOR D2.1 Public Page 143 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.20: UC2.US1a Workflow

Table 8.14: CASTOR KPIs for User Story UC2.US1a

KPI Definition Target Value
Moderate throughput The operation of CASTOR shall still allow for an

adequate throughput for the firmware/software upgrade
process to take place - it is the availability that takes a
lesser role since such updates can also take place in a
garage and not during the vehicle’s journey. However,
CASTOR aims to profile the impact of varying
throughput levels on the operational profile of the other
safety-critical operations. The size of a complete
firmware upgrade typically ranges from 300 MB to over
1 GB, meaning the update should take between 30 and
180 seconds, depending on the size.

≥ 70Mbps

Moderate latency The CASTOR operation should not induce significant
latency to the OTA process. However, this does not refer
to CASTOR possibly reducing the priority of such a
transmission for allowing the continuity and timly
responsiveness of the other safety-critical application.
The goal here is to measure the explicit latency that the
CASTOR pipeline when xecuted as an atomic process
can induce. In this case, there are no strict real-time
requirements (unlike in V2X messaging).

≤ 60s

CASTOR D2.1 Public Page 144 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

UC2.US1b Secure certificate renewal based on trusted network paths

As a V2X service provider, I want to be able to request an optimal network path with {high integrity
and high availability} (that complies with the SSLAs) to a PKI server, so that I can ensure secure
and reliable certificate updates for my clients.

User Story Confirmation

Certificate renewal is critical for maintaining continuous trust in V2X communications, as vehicles rely
on valid credentials to authenticate messages and participate in cooperative safety services. In the C-
ITS Certificate Management Architecture (ETSI TS 102 940), this process involves two main phases:
enrollment, during which the vehicle or on-board unit (OBU) obtains an initial enrollment certificate that
binds its identity to the PKI, and authorization, where the OBU uses its enrollment credentials to request
and receive short-lived authorization (pseudonym) certificates. These certificates are rotated periodically
to preserve privacy and are required for signing V2X messages on the road.

Both phases depend on a secure and reliable exchange of messages with PKI entities such as the Enroll-
ment Authority and Authorization Authority. While the certificate payloads are small, they are sensitive to
latency, trust, and availability constraints—any delay or failure can result in expired credentials or a tem-
porary loss of secure communications. In conventional networks, such requests may traverse untrusted
or unstable paths, leading to potential delays, redirection, or Denial-of-Service (DoS).

The CASTOR framework enhances this process by ensuring that enrollment and authorization traffic is
routed over trusted, policy-compliant network paths. Through mechanisms such as remote attestation,
dynamic trust and availability scoring, and cross-domain orchestration, CASTOR complements the PKI
layer by protecting the communication channel itself. This guarantees that C-ITS credential management
processes can execute reliably and securely, even under degraded network conditions, thereby maintain-
ing operational trust for emergency responder fleets.

CASTOR KPIs

The CASTOR KPIs for UC2.US1b are summarized in Table 8.15.

Table 8.15: CASTOR KPIs for User Story UC2.US1b

KPI Definition Target Value
Low throughput The operation of CASTOR shall allow for an adequate

throughput for the PKI certificate download process to
take place - especially considering the short-term
certificates that may need to be downloaded in specific
“zones”. Certificate batches vary in size, around 3-5 MB
per batch. The download does not need to be
immediate (sub-second).

∼1 Mbps

Strict latency The CASTOR operation shall allow for the PKI
certificate download process to be executed within the
time constraints posed by the “update zones”. The
transmission of a data packet should not take longer
than the specified value.

≤ 1s

SSLA compliance
notification latency

overhead

Latency overhead imposed by consuming
notifications/events from the CASTOR Trust Awareness
API (e.g., fetching SSLA compliance status) when
monitoring/controlling the PKI service should be below
the specified value.

≤ 10%

CASTOR D2.1 Public Page 145 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

UC2.US2 Update adapts to degraded trust

As a V2X service provider, I want to be notified if the active SSLA compliance is compromised, so
that transmission over an untrusted, potentially malicious, or underperforming network path can be
evaded.

User Story Confirmation

Even after selecting an initially trusted network path from the V2X Application Server to the OTA server,
conditions along that path may change during the update process. Nodes or links that were previously
trusted may become compromised, misconfigured, or otherwise fail to meet the integrity or performance
requirements defined in the active SSLA. Any violation of high-integrity guarantees, in particular, could
threaten the security of the update transmission.

The CASTOR framework continuously monitors the trustworthiness and performance of network entities
along the selected path. If the monitored path falls below the thresholds defined in the Main SSLA (e.g.,
high-integrity and minimum throughput), or if the high-integrity requirement is violated at any point, the
orchestrator generates a notification via the Trust Awareness API to the V2X Application Server. The
V2X AS integrates this notification into the update process and commands the OBU to either continue
the update if a compliant Fallback SSLA is available or abort the transfer if integrity is compromised.

By supporting multiple SSLAs of varying strictness, CASTOR enables adaptive operation: updates can
proceed under reduced throughput conditions when only a Fallback SSLA is met, while strict high-integrity
requirements are always enforced. This ensures that OTA updates remain secure and reliable, with the
V2X AS enforcing aborts whenever trust violations are detected, preserving the operational safety of
emergency responder vehicles.

User Story Workflow

Figure 8.21 shows an example workflow for adapting to violated SSLAs during the OTA update process.
In this example, the Main SSLA specifies high integrity (trust-related requirement) and specific minimum
throughput value (network performance-related requirement, see Table 8.14) as requirements to be kept.
The Fallback SSLA specifies high-integrity only. In this case, high-integrity is a must-have requirement,
while temporary violation of the minimum throughput requirement can be tolerable for the OTA update
process. Service registration and the negotiation of the Main and Fallback SSLAs precede the OTA
update process.

In this user story, the OTA update process is already in progress (see UC2.US1a), and the data chunks
are being downloaded from the OTA server. The flow of actions starts with the Main SSLA being violated,
after which the Trust Awareness API sends a notification to the V2X AS (step 1). If the Main SSLA is
violated, the Fallback SSLA can immediately take its place (according to initial service registration and
negotiations). The Trust Awareness API notifies the V2X AS about Fallback SSLA compliance (steps
2.1 and 2.2). The V2X AS can respond with different strategies based on the compliance of the Fallback
SSLA(s), e.g., by stopping the OTA update if integrity cannot be ensured (step 3). If the update is aborted,
the client (OBU) will immediately abort the process and revert to a stable state (step 4). The client also
sends a request to the OTA server (step 5) to stop/cancel the whole update process.

The V2X AS can optionally fetch extra details from the Trust Exposure Layer (step 6) for further investi-
gation. A renegotiation of SSLAs can follow if none of the previously negotiated SSLAs are compliant,
potentially using the fetched details during the renegotiation.

CASTOR KPIs

The CASTOR KPIs for UC2.US.2 regarding the CASTOR framework are summarized in Table 8.16.

CASTOR D2.1 Public Page 146 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.21: UC2.US.2 Workflow

Table 8.16: CASTOR KPIs for user story UC2.US2

KPI Definition Target Value
Routing path alternative

establishment
The CASTOR framework should find a routing path
alternative (without optimization) to enforce the Fallback
SSLA if the Main SSLA is violated.

≤ 50 ms (see requirement
TE.R.1)

SSLA compliance
notification

The CASTOR Trust Awareness API should notify the
V2X AS about Fallback SSLA compliance after the Main
SSLA is violated before the OTA process ends.

≤ 1 s

Violated SSLA property The CASTOR Trust Awareness API can reliably inform
the V2X Services about the violated SSLA properties.

TRUE

Throughput The relative amount of time with no throughput
guarantee compared to the total time to update.

≤ 30%

UC2.US3 Secure Routing to PKI Server in a different domain

As a V2X service provider, I want to be able to establish trusted communication with a PKI in a different
network domain, so that client certificates are always delivered via managed and trusted networks.

User Story Confirmation

In this scenario, a PKI server resides in a different CASTOR domain, potentially managed by a separate
orchestrator. Establishing trusted communication across domains is critical to ensure that client certifi-
cates are delivered securely and reliably, without exposing the transmission to untrusted or misconfig-
ured network elements. Without proper cross-domain coordination, certificate updates may be delayed,
blocked, or compromised, resulting in service disruption or a loss of trust in the V2X system.

The CASTOR framework adds value by enabling cross-domain trust provisioning. Each domain ex-
poses its trust capabilities and network guarantees to other domains via the Trust Exposure Layer,
allowing orchestrators to discover and interact with services across administrative boundaries while re-
specting SSLA requirements. This mechanism ensures that network paths connecting the V2X Appli-

CASTOR D2.1 Public Page 147 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

cation Server to external PKI servers remain compliant with defined trust and performance parameters,
even when traversing another domain’s infrastructure.

By leveraging cross-domain orchestration and the Trust Exposure Layer, CASTOR guarantees that cer-
tificate delivery remains secure, verifiable, and compliant, extending the integrity, availability, and trust
assurances of single-domain operations to multi-domain scenarios. This enables emergency responder
fleets to obtain certificates reliably from PKI servers in other domains while preserving end-to-end trust.

User Story Workflow

Figure 8.22 shows an example workflow in the cross-domain PKI scenario. Service registration in the
domain, the negotiation of the SSLAs, and the exchange of trust capabilities between the two domains
precede the PKI certificate renewal process. The underlying CASTOR procedures are hidden in the
workflow of this scenario; only the procedures experienced/influenced by the V2X service appear.

When the client (OBU) is close to having expired certificates, the update process begins. The client
compiles the appropriate HTTP request (step 1), and it signs the authorization certificate used for the
certificate renewal process (step 2). The request with the signed authorization cert is sent to the V2X AS,
acting as a proxy to the PKI (step 3). The V2X AS fetches the SSLA status from the Trust Awareness
API of its domain (step 3.1). Depending on the SSLA compliance, the certificate update process can
be denied (step 3.2) or it can go on by forwarding the request to the PKI server residing in the second
domain (step 3.3). The PKI server performs the authorization check (step 3.4) and provides a new set of
certificates to the client. The client can decrypt and install the new certificates at the end of the process
(step 4).

Figure 8.22: UC2.US3 Workflow

CASTOR KPIs

CASTOR D2.1 Public Page 148 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

The general KPIs for UC2.US3 regarding the CASTOR framework are summarized in Table 8.17.

Table 8.17: CASTOR KPIs for user story UC2.US3

KPI Definition Target Value
Availability Minimal impact on service availability Acceptable margins in

non-critical properties that
could compromise the
availability/integrity properties.

Cross-domain latency The additional latency imposed by the cross-domain
service provisioning and policy enforcement should not
exceed the specified value.

≤ 20% increase compared to
not using CASTOR

8.4 Priority-based Trusted Messaging & Scalable Performance for
CCAM Applications

8.4.1 “As-is” Scenario

European Telecommunications Standards Institute (ETSI) through its working groups develops and har-
monizes standards for Intelligent Transportation Systems (ITS), with the aim of providing guidelines and
requirements regarding services related to modes of transport and traffic management to enhance safety,
efficiency, and mobility on roads and highways. The technical specifications created by ETSI describe
different ITS components, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communi-
cation systems. Moreover, ETSI defines the real-time data exchange used for different services through
different message standards, such as the Cooperative Awareness Message (CAM) [5] and the Decen-
tralized Environmental Notification Message (DENM) [4]. These messages help vehicles and infrastruc-
ture share critical information about traffic, hazards, and road conditions. The cooperative awareness
message (CAM) provides information to nearby vehicles and roadside units (RSU) about vehicle speed,
position (latitude, longitude), direction, and acceleration. These messages are transmitted by the on-
board unit (OBU) with a period that depends on the dynamics of the vehicle (e.g., increasing frequency
during rapid maneuvers) as well as the radio channel load [5]. Decentralized Environmental Notification
Messages (DENM) are event-triggered messages used to notify vehicles and infrastructure about specific
road events or hazards. Due to their nature and importance, DENMs are time-critical in order to provide
timely warning and response.

Table 8.18 presents several events that trigger the generation and transmission of DENM messages.

8.4.2 System Model

The system architecture for the priority-based trusted messaging applications relies on entities and sen-
sors (e.g., cameras, radars) that are linked and coordinated across different domains. The architecture
and its components are illustrated in Figure 8.23.

• Detection sensors, such as cameras and radars, are core elements of the architecture and provide
real-time data on traffic flow, accidents, and vulnerable road users.

• GEO Service Provider (GSP) acts as a central application that collects data from sensors and ve-
hicles. These data are processed and transmitted through secure, policy-controlled paths to other
entities, including traffic operators, local emergency responders, and central emergency respon-
ders.

CASTOR D2.1 Public Page 149 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 8.18: Cause description triggering generation and transmission of DENM message [4]

Cause triggering DENM
messages

Details

Traffic Information about traffic congestion
Accident Information about accident with possibility of assistance requested

(e-call)
Roadworks Information about road works (e.g., major roadworks, road marking

work, street cleaning, etc.)
Adverse conditions Information about adverse conditions (e.g., flooding, danger of

avalanches, landslips, etc.)
Hazards on the road Information about hazards on the road (e.g., rock falls, earthquake

damage, fallen trees, stationary vehicle, etc.)
Wrong way driving Information about wrong carriageway (e.g., vehicle driving in wrong

lane, Vehicle driving in wrong driving direction)
Rescue and recovery work in

progress
Information about rescue and recovery (e.g., emergency vehicles,
rescue helicopter landing, police activity ongoing, medical
emergency ongoing, etc.)

Vehicle breakdown Information about vehicle breakdown (e.g., broken-down vehicle on
fire, broken-down unlit vehicle, lack of fuel, lack of battery, etc.)

Human problem Information about human health problems (e.g., glycaemia problem,
heart problem)

Stationary vehicle Information about stationary vehicle (e.g., human problem, vehicle
breakdown, post-crash, etc.)

Emergency vehicle
approaching

Information about emergency vehicle approaching (e.g., emergency
vehicle approaching, prioritized vehicle approaching)

Collision risk Information about collision risk (e.g., longitudinal collision risk,
crossing collision risk, lateral collision risk, etc.)

Dangerous situation Information about dangerous situation (e.g., emergency electronic
brake lights, pre-crash system activated, collision risk warning
activated, etc.)

• Traffic operators (TO) receive congestion alerts to optimize flow management.

• Local emergency responders (LER) are provided with authenticated accident notifications, en-
riched with precise location and severity indicators, so that fast, accurate, and timely emergency
measures can be deployed.

• Central emergency responders (CER) are alerted in the case of high-impact incidents through
trusted cross-domain channels. Based on these alerts, central emergency responders can enable
a properly scaled and coordinated response.

8.4.3 Scenario Needs from CASTOR

At the infrastructure level, CAM and DENM messages are processed locally by GEO Service Provider to
provide alerts to road users about traffic jams, road hazards, accidents, and to notify emergency services
when necessary.

For more critical situations, such as multi-vehicle collisions, local natural disasters, or regional road block-
ages, both critical and non-critical events are centrally managed, for example, by the Emergency Services
or National Highways.

CASTOR D2.1 Public Page 150 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.23 illustrates the flow of CAM and DENM messages in case of an accident. These messages are
sent over the 5G network to a local GEO Service Provider system for traffic monitoring and emergency
service alerts. Major traffic events are transmitted via the internet to a centralized service provider. How-
ever, due to the limitations of internet-based communication, messages related to major traffic events
could be delayed, altered, or even lost. In the case of non-critical events, these issues typically have
minimal impact. However, for critical events, these problems may lead to delayed responses from author-
ities, potentially resulting in fatalities that could have been prevented with faster intervention. Through
CASTOR’s framework, messages associated to critical events will be routed over trusted paths, so that
the limitations of internet-based communication will be mitigated.

Figure 8.23: Illustration of the network path for CAM and DENM messages

The routing of the messages will be handled by the CASTOR solution which will determine the necessary
path for DENM messages.

CASTOR D2.1 Public Page 151 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

8.4.4 Improved model using CASTOR’s framework

For the #3 use case in CASTOR’s framework, Technical University of Iasi (TUIASI) will develop a virtu-
alized OBU that will simulate the generation of CAM and DENM messages. These messages will be
routed over the physical 5G infrastructure to a GSP system in Ias, i. Furthermore, major traffic events will
be simulated and sent through Orange’s infrastructure to a centralized application server. The CASTOR
framework, which operates on top of Orange’s infrastructure, will handle the discovery of trusted paths
and will route messages associated with major critical events along those paths, as it is shown in Figure
8.24.

Figure 8.24: Message routing using CASTOR’s framework

In the context of #3 use case, three applications will be tested. In the first application, a GEO service
provider (GSP) uses CAM messages from a specific area to create an environment model. This model
is transmitted to a Traffic Operator (TO) to support traffic statistics and traffic management strategies. In
the second application, based on crash alerts received in DENM messages, the GSP informs a Local
Emergency Responder (LER) so that the LER can dispatch emergency vehicles. In case the crash is

CASTOR D2.1 Public Page 152 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

severe (e.g., a multi-vehicle crash), the GSP informs not only the LER but also a Central Emergency Re-
sponder (CER), so that multiple emergency services can be dispatched. In the third application, the GSP
processes raw data received from detection nodes (e.g., cameras, radars) deployed at an intersection to
detect Vulnerable Road Users (VRUs). Upon detection of a VRU, the GSP alerts vehicles intending to
cross the intersection.

The network and security requirements for Trusted Path Routing corresponding to the three applications
are presented in Table 8.19.

UC3 Network/Trust Properties of Interest
Name Description
Integrity Traffic information and alerts about crash accidents must not be tampered

with in transit. The raw data sent by the detection nodes must not be tam-
pered with in transit.

Latency Traffic information must not be exchanged with great delay, otherwise the
traffic prediction will not be accurate. Crash alerts must reach emergency
responders with little latency. Detection nodes must communicate their data
with very little delay.

Throughput/Bandwidth The network must support a sufficient data rate to exchange traffic informa-
tion or raw data.

Confidentiality Sensitive data shall not be disclosed to unauthorized parties to protect ve-
hicle identities and owners.

Availability The entities of interest for receiving data shall remain reachable with high
probability.

Table 8.19: Network and Trust properties as service-level objectives

8.4.5 Reference Scenario User Stories

UC3.US GEO service provider

As a GEO service provider, I want to be able to communicate with different entities over optimal trusted
paths that satisfy specific {network, trust} requirements.

User Story Confirmation

The GEO service provider (GSP) interacts with the CASTOR framework to establish SLAs for network
and trust specifications. This ensures that GSP can exchange data with different entities in a trusted
environment. Moreover, GSP can negotiate different service SLAs in function of application. For example,
an SLA with medium availability, integrity, latency, high throughput, and confidentiality is negotiated for
the traffic operator application (more details in the following). More strict requirements are necessary for
the emergency responder application or the vehicle driver / vulnerable road user application. Another
capability of the CASTOR which will be shown is related to the exchange of information across domains
in a trusted manner. This capability is detailed in user story US.2 Emergency Responder.

UC3.US1 Traffic operator

As a GEO service provider, I want to have a trusted path {medium availability, medium integrity,
confidentiality, medium latency and high throughput} through which to be able to provide to a
Traffic Operator real-time, accurate, and trustworthy information on potential traffic congestion situa-
tions, so that it can implement effective traffic management strategies to reduce delays and improve
traffic flow. I want the Traffic Operator to be notified if the selected path’s trust level drops below a
threshold, such that proper measures can be taken in case the situation persists.

User Story Confirmation

CASTOR D2.1 Public Page 153 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

In this user story, the GEO service provider initializes the request to establish a trusted path toward
the Traffic Operator (TO) as explained in Figure 6.3, which determines the available trust capabilities,
calculates a trusted path, and works with the network management to configure nodes accordingly.

The GEO service provider aggregates multiple CAM messages received from vehicles located in a local
region (e.g., city, intersection), and creates an environmental model which is sent to Traffic Operator.
This communication is realized through a secure message-oriented middleware. The GEO publishes
periodic traffic state updates as structured data to a dedicated channel or endpoint consumed by the
Traffic Operator’s system. CASTOR dynamically evaluates the trust environment of network elements
and communication links. Due to variations in node behaviour or link instability, CASTOR recalculates
path trust, triggers reconfiguration, or notifies the GEO of reduced trust levels. The system model inter-
acts with CASTOR in a feedback loop: congestion computations rely on traffic data transmitted through
the trusted path, CASTOR continuously monitors and reassesses the trust level, and upon threshold
breaches, notifies the GEO, who informs TO and may choose mitigation strategies (e.g., switch to a de-
graded mode, rely on backup paths, or trigger revalidation). Notifications related to the decrease in trust
levels can be indicated to an operator via a dashboard. By monitoring and reassessing, CASTOR acts as
a trust orchestration layer, ensuring that the TO not only receives reliable real-time information but also
has visibility into the integrity and resilience of the communication path itself.

User Story Workflow

GEO service
provider

Initialization

Trust Awareness
API Facility LayerVehicle1

Traffic messages
(CAM mess.)

Traffic Operator
(TO)

Traffic environment model

VehicleN

Traffic messages
(CAM mess.)

Vehicle2

Traffic messages
(CAM mess.)

Trust capabilities
decrease

SSLA is non compliant

Secure Oracle

record

Non compliant SSLA

Global TAF

Non compliant SSLA

Trust exposure
layer

Inquire SSLA
compliance

SSLA is non compliant

Service Registration (see Fig. 6.2)

Traffic Engineering
Policy Engine

Trust capabilities
decrease

Non compliant SSLA

Compute Traffic

Figure 8.25: UC3.US1 Workflow

UC3.US2 Emergency Responder

As a GEO service provider, I want to have a trusted path {very high availability, very high integrity,
and low latency} through which to be able to provide to a Local Emergency Responder (nearby), au-
thenticated accident notifications with precise location, severity assessment, and trust level indication,
so that it can dispatch appropriate resources and coordinate effective emergency response, without
false alarms. In case of severe accidents, I want to have a trusted, cross-domain path {very high
availability, very high integrity, and medium latency} to a Central Emergency Responder (located
in a different domain), that can coordinate a centralized response to the accident, properly scaled to
its severity level.

User Story Confirmation

In this user story, the assumption is that trusted paths are already determined and configured by CAS-
TOR, ensuring that both local and cross-domain emergency entities are connected to the GEO service
provider (GSP) before any accident event occurs. Vehicles generate authenticated DENM messages,

CASTOR D2.1 Public Page 154 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

authentication which is based on security mechanisms presented in [8]. The messages contain accident
details, which the GEO service provider aggregates, verifies, and enriches with severity assessments.
Furthermore, when an accident is detected, the GEO Service Provider computes a severity score based
on different attributes or information, and if the score remains below the escalation threshold, it trans-
mits an authenticated DENM to the Local Emergency Responder via the pre-established trusted path. If
severity meets or exceeds the threshold (e.g., a multi-vehicle crash or an accident involving a bus), the
GSP sends the accident notification to the Local Emergency Responder and also to Central Emergency
Responder (CER)—typically in another domain. The alerts can be displayed to operators at LER or CER
on a dashboard, for example. The establishment of cross-domain paths allowing the transmission of such
alerts over trusted paths follows the service negotiation and registration processes of Section 6.2.1. After
receiving the notification, CER initiates scaled actions by mobilizing emergency services (e.g., activate a
Code Red intervention plan, dispatch an air ambulance).

User Story Workflow

Figure 8.26: UC3.US2 Workflow

UC3.US3 Vehicle driver

As a GEO service provider, I want to have trusted paths {high availability, high integrity, high
throughput, and very low latency} to detection sensors (e.g., cameras, radars), so that I can receive
in real-time trusted information. Based on this information, I will alert in real-time connected Vehicle
Drivers navigating a dense traffic intersection about vulnerable road users (VRUs) that may intersect
their trajectory, so that they can take timely action and avoid a potential collision. I want to be informed
in case the selected path’s trust level drops below a threshold, such that I can let the Vehicle Drivers
be properly informed.

User Story Confirmation

In this user story, it is assumed that through the interaction between GEO service provider and CASTOR,
CASTOR establishes trusted paths between the GEO service provider and detection nodes (e.g., cam-
eras at intersections). Vehicles broadcast CAM messages that contain information about their direction.
Processing this information and real-time video streams from cameras, the GEO service provider identi-
fies potential collision with Vulnerable Road User (VRU) and transmits an alert to the vehicle. CASTOR
monitors the trustworthiness of the configured path, calculating trust levels that reflect network node in-
tegrity, data freshness, and link quality. In case of degradation in the trust level, such that the established
SSLA is not compliant, CASTOR can trigger path reconfiguration or notify the GEO service provider of
reduced trust. Notification by the Trust Awareness API is sent to GEO if and only if the SSLA is not
compliant. If a possible trust degradation occurs so that the SSLA is still compliant, then no notification

CASTOR D2.1 Public Page 155 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

is produced. When trust levels remain above the threshold, vehicles receive trustworthy alerts via DENM
messages such as “STOP: Collision risk involving VRU”. If trust levels drop below threshold, the GEO
service provider notifies the vehicle through a DENM message: “Reduce speed: Possible VRU presence.”

User Story Workflow

Geo service
provider

Initialization

Intersection monitoring

Trusr Awareness
API Facility LayerVehicle

Traffic messages
(CAM mess.)

STOP: Collision risk involving VRU
(DENM mess.)

Detection node
(Camera)

Video stream

Trust capabilities decrease

Trust capabilities decrease

Reduce speed: Possible VRU presence
(DENM mess.)

VRU detection

Global TAF

Service Registration (see Fig. 6.2)

Secure Oracle

Non compliant SSLA

SSLA is non compliant

record

Traffic
Engineering

Policy Engine

Trust capabilities decrease

SSLA is non compliant

Processing decrease in trus capabilities

Figure 8.27: UC3.US3 Workflow

CASTOR KPIs

Table 8.20: Quantitative KPIs for user story UC3.US1 - Traffic Operator

KPI Definition Target Value
Latency End-to-end latency for exchanging non-safety messages

between the GEO Service Provider and the Traffic
Operator, taking into consideration the CASTOR-related
overhead, shall remain within the latency limit defined
by 5GAA for the Real Time HD Map update service.

10− 200sec [9, pp. 33-34]

Reliability Percentage of time the system is operational and
capable of delivering the intended service shall fulfil
service level reliability specified by 5GAA for the Real
Time HD Map update service. This involves measuring
operational time relative to downtime or service
interruptions, and verifying the integrity of the traffic
models at reception.

99% [9, pp. 33-34]

Table 8.21: Qualitative KPIs for user story UC3.US1 - Traffic Operator

KPI Definition Target Value
Service degradation CASTOR framework shall provide alerts of SSLA

violation to all involved parties (i.e., GSP and TO)
TRUE

Throughput CASTOR framework shall accommodate traffic rates as
specified in [10]

TRUE

Table 8.22: Quantitative KPIs for user story UC3.US2 - Emergency Operator

KPI Definition Target Value
Latency End-to-end latency for establishing emergency calls

between the GEO Service Provider and the Local
Emergency Operator (LER), taking into consideration
the CASTOR-related overhead, shall remain within the
latency limit defined by 5GAA for the xCall service2

≤ 1sec [12, pp. 16-18]

25GAA specifies that in case of an accident, a call with a local emergency responder must be initiated in 1 second[12,
pp. 16-18]

CASTOR D2.1 Public Page 156 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

KPI Definition Target Value
Latency Local Emergency Operator decides and communicates

the emergency to Central Emergency Operator
in less than 5 minutes (300
sec)

Reliability Percentage of time the system is operational and
capable of delivering the intended service shall fulfil
service level reliability specified by 5GAA for the XCall
service. This involves measuring operational time
relative to downtime or service interruptions, and
verifying the integrity of the alerts at reception.

99.x% [12, pp. 16-18]

Table 8.23: Qualitative KPIs for user story UC3.US2 - Emergency Operator

KPI Definition Target Value
Capabilities CASTOR should provision cross-domain services

satisfying SSLAs across different domains
TRUE

Table 8.24: Quantitative KPIs for user story UC3.US3 - VRU

KPI Definition Target Value
Latency End-to-end latency for exchanging data between

cameras and the GEO Service Provider, taking into
consideration the CASTOR-related overhead, shall
remain within the latency limit defined by 5GAA for
Yielding Right-of-Way to VRU service[12, pp. 39-43]

200 msec [12, pp. 39-43]

Reliability Percentage of time the system is operational and
capable of delivering the intended service shall fulfil
service level reliability specified by 5GAA for Yielding
Right-of-Way to VRU service. This involves measuring
operational time relative to downtime or service
interruptions, and verifying the integrity of transmitted
data at reception.

99.9% [12, pp. 39-43]

Table 8.25: Qualitative KPIs for user story UC3.US3 - VRU

KPI Definition Target Value
Throughput CASTOR framework shall accommodate traffic rates

according to monitored area and number of detection
nodes

TRUE

8.5 Future-Proofing Next-Generation Unmanned Aerial Vehicles Com-
munications towards Critical Infrastructure Sustainability

In the critical infrastructure inspection domain, fleets of Unmanned Aerial Vehicles (UAVs) rely on secure
and efficient network communications to coordinate missions, relay telemetry data, and ensure opera-
tional continuity. Trust and reliability in network routing are crucial to maintaining real-time situational
awareness, ensuring mission success, and protecting sensitive information from cyber threats on the
infrastructure.

8.5.1 System Model

Figure 8.28 depicts an abstract view of the topology considered for drone inspection. The architecture
is based on the “ETSI TS 123 501 - 5G; System architecture for the 5G System (5GS)” standard. The

CASTOR D2.1 Public Page 157 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Private Cloud (K3Y)

Data Network (Internet)

Shared Backhaul Infrastructure
(used by multiple MNOs)

M
N

O
 #

1
(O

R
O

)

gNB

M
N

O
 #

2

gNB

I-UPF

I-UPF

M
N

O
 #

1
(O

R
O

)

gNB

I-UPF

5G Core / MNO #1

Ingress Node

N9

Egress Node

UPF N6

SMFAMF PCF

AUSF UDM UDR

UAV Swarm ManagerUAV Swarm Manager

Multiple Countries & Jurisdictions

Ingress Node

Egress Node

5G Core / MNO #2

N9 UPF

SMFAMF PCF

AUSF UDM UDR

N6

Figure 8.28: UAV-related System Model

topology depicts the network path followed by the 5G-enabled Unmanned Aerial Vehicles (UAVs) to ac-
cess the UAV Swarm Manager, which coordinates the drone’s operation and obtains real-time telemetry
and data from the inspection process.

A shared backhaul network is accessed by multiple base stations (gNB), belonging to different Mobile
Network Operators (MNOs). The UAVs are positioned to cover the large area that they must cover during
the inspection process. Considering the high requirements in terms of latency and bandwidth, multiple
intermediate User Plane Functions (I-UPFs) are placed close to the access network, serving one or
multiple gNBs. The I-UPFs pass encapsulated traffic to the central UPF at the 5G core through the 5G
backhaul, a high-speed network that consists of multiple routing nodes and redundant paths, which is
shared by multiple MNOs. Finally, moving towards the data network, the 5G core gets access to the data
network, ultimately reaching the UAV swarm manager.

8.5.1.1 System Components

Monitoring and inspection of the energy infrastructure is made possible by using a fleet of UAVs that are
deployed in a 5G network. A UAV swarm manager is connected to the other edge of the network, pro-
viding commands, updating drone missions and locations, and receiving information collected by drones.
The key components of the system are:

1. Unmanned Aerial Vehicles (UAVs) fleet: The UAVs are equipped with high-resolution cameras,
LiDAR, or other specialized sensors to perform autonomous inspections of critical infrastructure,
such as power lines, pipelines, or bridges. The UAVs receive waypoints from the GCS for flight
coordination, and transmit live sensor data and telemetry (position, battery status, and system
health) to the UAV swarm manager.

2. Ground Control Station (GCS): The Ground Control Station serves as the central hub for mission
planning, real-time monitoring, and control of the UAV swarm during critical infrastructure inspec-
tions. The GCS will be used to define mission inspection parameters, receive waypoints from the
Swarm Manager and upload them to the UAVs, and provide an interface for the mission that in-
cludes telemetry data, UAVs positions and their respected battery levels and their sensor feeds.

3. UAV Swarm Manager: A Swarm Manager, running within a private cloud domain, acts as the
orchestrator for multi-UAV missions. The Swarm Manager acts as an abstraction layer capable
of selecting and generating the path trajectory of the UAVs to be followed in a compliant mavlink
format. Mission waypoints are computed by the Swarm Manager’s and published to each UAV over

CASTOR D2.1 Public Page 158 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

User Equipment M NO Internet Private Cloud

Ground Control
Station UAVs gNB 5G Core UPF DN

UAV Swarm
Manager Operator

STATE #1: Initial Connectivity

Connect to 5G

Connect to 5G

STATE #2: Define mission

Define flight mission

Compute route
+ waypoints

Send waypoints trajectory

STATE #3: Mission Execution

UAVs are 5G-connected and ready to fly

loop [For each waypoint]

"Fly to waypoint #i"

Telemetry
(GPS coords, battery level,

video data)

Forward PFCP-encapsulated
telemetry packet

Forward telemetry data

Deliver telemetry data
& video stream

to Swarm Manager

Figure 8.29: The communication flow in UC4

their dedicated 5G PDU sessions. Heartbeat messages and status updates flow continuously from
the UAVs back to the Swarm Manager, enabling real-time status updates of each UAV.

4. 5G Core Network: The 5G network core enables UAVs and the GCS to access the data network
and the UAV swarm manager, as well as for the UAVs to reach the GCS. The UAVs are tethered to
UAV GCSs through 5G links. UAVs receive flight plans before launch, which lay out a succession
of waypoints that the UAV must adhere to when travelling from launch to destination sites.

5. Routers: These are intermediary devices that provide redundant paths to forward data between the
access network, the 5G core and the private cloud hosting the UAV swarm manager. The routers
carry various types of data, including UAV telemetry, sensor data, and control commands across
multiple network segments. Routing protocols, such as OSPF and BGP, are used to establish
routing paths between the network segments.

8.5.1.2 Communication Flow

Figure 8.29 depicts a high-level view of the communication flow between the components of a UAV op-
eration. The overall communication process is separated into three states. First, the initial connectivity
state begins with the UAVs and the GCS synchronize with an available gNB and then sending connection
requests to the 5G core through the synchronized gNB. The connection requests are evaluated from the
5G core services, namely Access and Mobility Management Function (AMF) with the help of the Authen-
tication Server Function (AUSF), the Session Management Function (SMF) setups the 5G sessions, and
the 5G connectivity is established. The next state is the UAV mission definition, which involves message
exchanges between the GCS and the UAV Swarm Manager. In particular, the UAV Mission Operator uti-
lizes the UAV Swarm Manager software to define the mission, the routes and waypoints are calculated by
the software, and these are sent to the GCS through the Internet. The User Plane Function (UPF) plays
a critical role on transfering data packets (user plane traffic) in or out of the 5G core, essentially bridging

CASTOR D2.1 Public Page 159 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

the 5G User Equipment (UEs) with the external networks, the Internet, and the UAV Swarm Manager.
Finally, the third state is the mission execution, which can be described as a loop of a sequence of actions
repeated while the UAV Swarm Manager is sending new waypoints. The loop starts with the GCS, which
sends the waypoints to the respective UAVs (with the help of the 5G core). Then, the UAVs perform the
action while continuously transmitting relevant live telemetry in terms of GPS coordinates, battery level,
device status and high-quality video feed to the gNB. This user plane traffic reaches the 5G core and,
through the UPF service, the user plane traffic goes out to the Internet. The telemetry & video feed data
navigate through the Internet in order to reach the UAV Swarm Manager. This loop is active while the
UAV operation is ongoing.

8.5.2 “As-is” Scenario

The 5G-enabled UAV swarms provide multiple benefits for the inspection of large-scale critical infras-
tructure (e.g., power lines) in terms of low-latency and high throughput connectivity. To achieve a large-
scale inspection, mission-critical coordination data such as telemetry data, waypoint’s locations and video
feeds, images and thermal scans, have to be exchanged with a Swarm Manager, which may be hosted on
a private cloud, often located even in another country. As such, it is challenging to ensure adequate qual-
ity of service, in terms of security and availability of network resources, as the required data transmission
involves multiple network nodes with different properties, available resources, and jurisdictions.

In particular, starting from the network edge and the 5G RAN, the UAV data may need to pass through
a shared backbone network infrastructure in order to reach the 5G core. Adopting the mobile edge com-
puting model, which aims to enhance the performance of 5G networks by bringing computing power and
data processing closer to the location where the data is generated/consumed or close to dedicated ac-
celerators of compute-intensive tasks, the 5G operators may decouple the centralised 5G core system,
by bringing some of its components closer to the edge [81]. In this context, multiple UPFs, called inter-
mediate UPFs (I-UPFs), are deployed closer to the access network in order to reduce the computational
workload of the central UPF, considering that UPFs comprise the most compute-intensive workload within
the packet core [105]. This approach aims to reduce end-to-end latency and back-haul bandwidth con-
sumption, thus preventing congestion in the core network [94]. Hence, the user plane traffic from the
gNBs may reach the 5G core (and backwards) through the I-UPFs, however, the 5G core traffic (i.e.,
the traffic between the I-UPFs and the anchor UPF) uses a shared transport network that is operated by
another entity, e.g., by a neutral host that provides a shared IP infrastructure.

Next, once the data exits the 5G Core and enters the Data Network, it must travel through a series of
routers, belonging to different network operators, infrastructure providers and countries, until it reaches
the Swarm Manager. The routing usually relies on pre-established paths using well-known algorithms,
such as OSPF and BGP.

A common inspection mission starts by providing waypoints to the UAVs through the Swarm Manager,
while simultaneously uploading mission inspection and telemetry data from each UAV. Assuming the orig-
inating point on the UAV swarm manager, and that the UAVs may be located even on a different country,
the mission data will traverse through multiple routing nodes, involving multiple network operators and
ISPs, possibly with different national jurisdictions. Hence, there are no guarantees that the intermediary
nodes (i.e., routers) that forward the sensitive mission data, have their software and firmware integrity
checked or that their runtime behaviour is continuously monitored or cryptographically attested, raising
the possibility of silent degradation or malicious takeover. For example, if a router along the path to the
UAV Swarm Manager and vice versa is operating on outdated firmware, has been misconfigured, or is
backdoored via a supply chain attack, the UAVs’ data may be intercepted, delayed, or silently altered,
without any alarms being raised.

CASTOR D2.1 Public Page 160 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

8.5.3 Use Case needs from CASTOR

Using UAVs for mission inspection of power infrastructure depends on uninterrupted telemetry, sensor
payloads, and operator command loops traversing a complex end-to-end network, beginning in the 5G
RAN to the I-UPF on the edge network, towards the 5G core, reaching the UAV operator’s private cloud
through the Internet. Today’s transport fabric is optimized for bandwidth and latency guarantees but
is agnostic to underlying security risks introduced by routing nodes or by traversing through untrusted
networks.

It is noteworthy that a cryptographically attested carrier-grade router in the 5G transport core is treated
no differently from a legacy, unverified router in a public backbone segment, and no trust metadata ac-
companies the inspection data as it travels upstream, so that the trustworthiness of the data streams
can be assessed. As a result, the UAV operator has neither visibility nor guarantees into the trustworthi-
ness of the networking path followed by each data stream reaching the cloud and backwards, leading the
operator to assume all data streams are equally reliable.

To resolve this gap, it is required from CASTOR to deliver three foundational functions for trust-assured
UAV inspection operations:

1. Router Trust Attestation CASTOR continuously evaluates the reliability and trustworthiness of
each intermediary node in the UAV communication path, from the access network to the UAV cloud,
assessing each node’s firmware integrity and run-time state.

2. Trust-Weighted Path Selection & Failover CASTOR automatically inspects nearest alternate
paths that comply with a Required Trust Level (RTL) when the trust score of a router falls below
the RTL, balancing trustworthiness with latency and throughput.

3. Trust-Aware Service-Level Security Agreements (SSLAs): Data publishers create primary SS-
LAs that trust must comply to as well as fallback SSLAs. CASTOR notifies which tier is currently
active, which allows to dynamically adjust the stream path while preserving data continuity.

UC4 Network/Trust Properties of Interest
Name Description
Integrity Ensures data is not altered or tampered with during transmission. It is a

security measure needed for all data streams, ensuring the authenticity of
the data.

Latency Time taken for packets to traverse the network. Every data stream is ex-
pected to have low latency to reach the destination as quickly as possible.

Bandwidth Represent the networks capacity of carrying data. Adequate bandwidth is
essential for transmitting smooth high resolution video feeds.

Reliability Ensures complete delivery of data streams, needed mission data to traverse
the network.

Availability Guarantees consistent packet delivery of mission data, avoiding gaps in
UAV telemetry and trajectory data, preventing unsafe UAV behaviour due to
command loss.

Jitter Measure variation in packet delivery times. Low jitter ensures consistent
updates in telemetry data, and predictable time in data streams.

Auditability Logs must be tamper-evident so post-mission auditors can prove telemetry
wasn’t altered

Confidentiality Ensure data is accessible only to authorized entities, helping protect sensi-
tive data for operational security

Table 8.26: Network and Trust properties as service-level objectives

CASTOR D2.1 Public Page 161 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

8.5.4 ”To be” Reference Scenario 1: CASTOR in the Data Network

The objective of this use case scenario is to ensure that UAV mission data exiting the 5G core will reach
the UAV Swarm Manager in the private cloud, by using paths with routers that satisfy certain SSLAs.
CASTOR will continuously attest to the trust of every router in the Data Network, until reaching the private
cloud, computing the trust of each path, and rerouting the traffic to a path with higher trust score when
the trust score falls below the specified RTL.

This use case scenario requires low-latency and tamper-evident communications to maintain real-time
situation awareness. While networks are usually optimised through QoS policies and network slicing,
there are no guarantees that, once the traffic leaves the anchor UPF and enters the Data Network, will
not pass through a compromised node that could tamper with or compromise the confidentiality of the
data flows. This creates blind spots where efficient, yet compromised routers can handle sensitive flows,
while it is commonly assumed that all Internet routes are equivalently trustworthy, rarely assigning path
weight to the probability of tampering in the forwarding plane.

8.5.5 ”To be” Reference Scenario 2: External Risk Indices as input to CASTOR
in Data Network

The objective of this use case scenario to ensure that a risk index provided by an MNO for the UEs and
the overall 5G infrastructure, can affect the selection of the optimal path that CASTOR decides during the
path assessment, thus minimizing the overall risk. Purpose of the risk index, obtained through internal
risk assessment processes of the MNO that are agnostic to CASTOR, is to reflect the overall security
risk characterizing the 5G data streams, aggregating multiple inputs such as the risk score of relevant
vulnerabilities, the probability and impact of potential incidents, the criticality of the UAV mission, ongoing
threat campaigns and other cyber threat intelligence. The risk index expresses how important it is to
select secure & trustworthy routers during the data transmission in order to minimize the probability of
a risk materialization. Given the above, this scenario will study how the path selection of CASTOR will
be influenced by the risk index, balancing the satisfaction of the service quality with the probability of a
potential risk materialization on the intermediary routing nodes.

8.5.6 Reference Scenario User Stories for Scenarios 1 and 2: CASTOR in the
Data Network and Risk-aware Path Selection

UC4.US1a - Nominal operation

As a UAV mission operator, I need to have quality of service guarantees in the communication flows
between the UAVs and the UAV Swarm Manager in terms of {bandwidth, latency}, considering the
requirements of the diverse data streams, such as telemetry data and high-definition video streams.

User Story Confirmation

The UAV equipment, including both the UAVs and the GCS, establish a MAVLink2 session with the UAV
Swarm Manager over the Internet, by initializing IDs and signal presence. After the session establish-
ment, the UAVs continuously stream sensor data towards the UAV Swarm Manager, where the informa-
tion is analysed and new waypoints for location traversal are calculated and sent back to the UAVs. The
UAV Mission Operator should be able, through the UAV Swarm Manager, to see the UAVs online, get and
visualize their telemetry as well as to send back trajectory data.

User Story Workflow

1. The UAVs initialize 5G connectivity.

CASTOR D2.1 Public Page 162 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

2. The UAVs establish MAVLink2 session with the UAV Swarm Manager over the 5G infrastructure
and the Internet, establishing IDs and signal presence.

3. UAVs publish telemetry and video feed data towards the UAV Swarm Manager.

4. A series of routers in Infrastructure Layer forward the user plane data to the UAV Swarm Manager.

5. The UAV Swarm Manager processes data and calculates new trajectory paths.

6. Swarm Manager publishes trajectory update data to the UAVs.

7. The trajectory data follow the path back to the UAVs using the routers in Infrastructure Layer.

8. UAVs consume the trajectory update and adjust their paths.

9. As there are no trust & security guarantees, the UAV mission data get compromised from an un-
trustworthy intermediate node, through tampering or passive reconnaissance.

10. The UAVs and the UAV Swarm Manager consume the mission data, however, the UAV operation is
now compromised without the knowledge of the UAV mission operator.

CASTOR D2.1 Public Page 163 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.30: Sequence Diagram of UC4.US1a - Nominal operation

Reference Values The following metrics will be gathered and serve and baseline metrics, to be compared
with the situation after CASTOR.

Table 8.27: Reference Values for user story UC4.US1a

Measurement Description Value / Scenario
Baseline Latency One-way delay between the UAV and the

Swarm Manager.
Obtained in the nominal
operation, without CASTOR.

Command Loop
RTT

GCS command to UAV acknowledgment
round-trip time.

Obtained in the nominal
operation, without CASTOR.

CASTOR D2.1 Public Page 164 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

UC4.US1b - Fallback SSLA

As the UAV mission operator, if my primary SSLA with {bandwidth, latency, integrity, confidential-
ity} requirements cannot be met, I would like to be notified about it, and then a fallback SSLA with the
minimum-required trust should be activated and enforced. If the requirements of the fallback SSLA
cannot be guaranteed too, I want to be notified about it, so that I can decide whether to terminate the
UAV mission.

User Story Confirmation

A fallback SSLA is defined, along the primary SSLA, to be used when the requirements of the primary
SSLA cannot be satisfied. During the trust assessment of the paths, CASTOR verifies whether the
primary SSLA is violated or not. Initially, the primary SSLA is violated, triggering CASTOR to enforce the
fallback SSLA, by adjusting the infrastructure layer accordingly, and to notify the UAV mission operator
about the SSLA degradation. Then, the fallback SSLA is also violated, and as a result, CASTOR notifies
the mission operator to take the appropriate action whether to cancel the UAV mission.

User Story Workflow

1. The initial SSLA along with a fallback SSLA are established by CASTOR.

2. Both SSLAs are recorded in CASTOR DLT using the Secure Oracle.

3. The UAV mission unfolds, and UAVs begin to publish data.

4. The Global TAF will update the topology diagram, and it will be shared with the Traffic Engineering
Policy Engine for the trust assessment.

5. During the trust assessment, the Traffic Engineering Police Engine detects that the initial SSLA
requirements cannot longer be guaranteed.

6. The change in the SSLA is shared and recorded on the Secure Oracle, and the fallback SSLA is
now used during the trust assessment.

7. The Traffic Engineering Policy Engine will now test against the fallback SSLA.

8. The fallback SSLA is violated too, and is recorded in the Secure Oracle.

9. CASTOR informs the operator through the Trust Awareness API that no SSLAs can be guaranteed.

CASTOR D2.1 Public Page 165 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.31: US4.US1b: Fallback SSLA

CASTOR KPIs

Table 8.28: CASTOR KPIs for user story UC4.US1b

KPI Definition Target Value
Latency within the

Data Network
One-way delay between the UAV and the
Swarm Manager, considering the overhead
introduced by CASTOR.

≤ 5% compared to the
nominal operation.

SSLA violation
accuracy

This KPI measures how accurately CASTOR
updates the ATL in response to observed
misbehaviours (against to what will have been
defined as ground truth considering the
SW-in-the-loop nature of this setup allowing
the truthful characterization of the entire
scene). It is defined as the covariance matrix
of the error vector on object (misbehaviour)
detection ration against the ground truth.

≥ 95%

Routing path
alternative

establishment

Time needed to converge and determine the
paths.

Similar Convergence time
to existing rerouting
capabilities when
no-recalculation takes
place (sub-50ms).

CASTOR D2.1 Public Page 166 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

KPI Definition Target Value
RTL behaviour

correctness
RA yielding RTL based on which the Trust
Level Estimation will take place.

Trust Decision correctly
captures the behaviour
pattern (trust
increase/decrease)
depending on injected
misbehaviours.

UC4.US1c - SSLA compliance audit

As the UAV mission operator, I want to periodically review the SSLA compliance {Auditability} so
that I can verify the integrity and compliance of my UAV operations.

User Story Confirmation

The UAV operator acts as an auditor and wants to perform an SSLA compliance review. CASTOR has
recorded every change in the SSLAs during the trust assessment and when the UAV auditor requests an
SSLA compliance audit, CASTOR provides the history of the SSLA changes. The auditor then reviews
this report, and verifies that all sensitive information travelled only over compliant paths and that every
SSLA value change was properly documented.

User Story Workflow

1. A third-party auditor is contracted to perform an SSLA compliance review.

2. The initial SSLA is recorded on the CASTOR DLT using the Secure Oracle.

3. During the execution of the mission, trustworthiness claims will be provided to Global TAF which
updates the topology graph.

4. The new proposed paths are shared to the Traffic Execution Policy Engine.

5. The Traffic Engineering policy engine determines if the new paths violate the SSLA or not.

6. Any change in the SSLA decided by the Traffic Execution Policy Engine is recorded on the Secure
Oracle.

7. The auditor requests an SSLA compliance report from CASTOR using the Trust Exposure Layer.

8. CASTOR shares with the auditor a record of the SSLA changes that are stored in the Secure
Oracle.

User Story Workflow

CASTOR D2.1 Public Page 167 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Figure 8.32: UC4.US1c: SSLA compliance report

CASTOR KPIs

Table 8.29: CASTOR KPIs for user story UC4.US1c

KPI Definition Target Value
Routing path
alternative

establishment

Time it takes for the Optimization Engine to
recommend alternative paths (multi-path
control feature of CASTOR). This might be
based on pre-calculated path segments (if no
nw service intents have arrived that may
results in the overall update of the set of
enforced routing policies) and/or freshly
calculated paths. In the former case, the goal
is to identify CASTOR’s sensitivity in topology
and temporal changes whereas the latter
focuses on the performance bechmarking of
the optimization process.

TRUE, this includes the
time to enforce the new
TE policy to the topology.

SSLA compliance
information availability
from internal auditor

It measures the latency of accessing the SSLA
compliance information, given that the SSLA
auditor is part of the Service Provider and
therefore uses the Trust Awareness API.

< 1sec

SSLA compliance
information availability

for external auditor

It measures the latency of accessing the SSLA
compliance information, given that the SSLA
auditor is external entity and therefore uses
the DLT-based Trust Exposure Layer.

< 5sec

CASTOR D2.1 Public Page 168 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

UC4.US2a - Risk-aware path selection

As a UAV mission operator, I want CASTOR to consider the risk index of the 5G network in the
selection of network paths that satisfy SSLAs with {high confidentiality, high integrity, high avail-
ability}.

User Story Confirmation

During the preparedness phase, a risk index is shared by the MNO to CASTOR, which represents the
overall risk status of the 5G infrastructure and UEs. Utilizing the risk index, CASTOR performs more
accurate risk assessment, which considers the potential vulnerabilities of the 5G infrastructure (e.g.,
vulnerabilities from the UAVs), guiding CASTOR to enhance the creation of RTL, thus selecting better
paths with stricter security guarantees.

User Story Workflow

1. Using the Trust Awareness API, the MNO informs CASTOR about the Risk Index representing the
overall risk status of the 5G infrastructure and the UEs.

2. The Risk Index is used by CASTOR for the calculation of the RTL for the trust assessment.

3. The Risk index is persisted on-chain to the Secure Oracle.

4. During the trust assessment, the Risk Assessment Engine retrieves the Risk Index and uses it as
input for the calculation of the RTL.

5. Calculate ATL and detect that ATL does not satisfy RTL values.

6. The Global TAF evaluates the current path and updates the topology graph.

7. Traffic Engineering Policy Engine will determine if the path is compliant to the SSLA or not.

8. If the path is non-compliant, another alternative path will be selected by the Optimization Engine.

Figure 8.33: UC4.US2a: Risk Index

CASTOR KPIs

CASTOR D2.1 Public Page 169 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 8.30: CASTOR KPIs for user story UC4.US2a

KPI Definition Target Value
Risk assessment

accuracy
Measures the accuracy (and impact therefore)
of the risk assessment process on the RTL
calculation when accounting for additional
demands that may stem from a vulnerable
profile of the source AS - expressed through
abstract attack likelihood values.

Improved by 20%,
compared to the baseline
risk assessment
accuracy.

8.5.7 ”Nice-to-have” Scenario User Stories: CASTOR in the Shared Back-haul
Infrastructure

As an exploration case, this use case scenario delves into a distributed deployment of a 5G core setup,
and aims to optimize the performance of the backhaul infrastructure, by choosing the rights paths that
will ensure that the 5G core operates at maximum quality in terms of integrity, availability and overall
performance.

Low latency is expected to meet end-to-end reliability and integrity across deployments in 5G. Even
though QoS policies and network slicing can be applied over UPF to UPF communication (i.e, N9 in-
terface), and security measures are taken to protect the N9 interface, such as VPN and new tunnelling
techniques [141], there is no guarantee that the communication over the N9 interface will remain uncom-
promised from unknown vulnerabilities and misconfigured VPN protocols as well as it will remain reliable
and unaffected from outages or overloaded/underperforming network equipment. Given the above, CAS-
TOR brings trust assessment on router level ensuring performance and trustworthiness of UPF-to-UPF
communication. CASTOR eliminates this blind spot by dynamically evaluating router trust, ensuring that
inter-UPF data paths are both performant and trustworthy.

It is worth noting that this scenario is agnostic on the user plane data, as the user plane data (i.e., the UAV
mission data in this use case) is encapsulated during their transmission inside the distributed 5G core.
Given that, the use case scenario explores the optimization of the 5G core itself without assumptions on
visibility over the plain UAV data.

UC4.US3a - Nominal Operation

As an MNO, I want my data streams between the I-UPFs and the achor UPF to satisfy my {latency,
bandwidth} requirements, to ensure that the operation of the 5G core adequately satisfies the com-
munication requirements of my clients, including the UAV operator.

User Story Confirmation

The UAV operator starts the UAV mission, while the MNO does not have an SSLA in place. Traffic from
UAVs is received from the I-UPFs , and the MNO confirms that the traffic is successfully received to the
A-UPF.

User Story Workflow

1. UAV establish 5G session by interacting with the respective 5G services of the 5G core.

2. The UAV traffic goes through the local I-UPF.

3. The I-UPF traffic is encapsulated into GTP-U packets.

4. The GTP-U packets are routed through the backhaul network.

CASTOR D2.1 Public Page 170 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

5. The GTP-U packets arrive at the anchor UPF and are decapsulated successfully.

6. At some point, a network failure in the backhaul network reduces the network reliability.

7. Due to the reduction of the network reliability, the GTP-U packets cannot longer be delivered.

Figure 8.34: UC4.US3a: Nominal Operation

Reference Values

Table 8.31: Reference Values for user story UC4.US3a

Measurement Description Value / Scenario
Base Latency One-way delay between the UAV and the

Swarm Manager.
Obtained in the nominal
operation, without CASTOR.

Baseline scalability
& reliability

% of packet loss considering a failure on the
infrastructure layer

Obtained in the nominal
operation, without CASTOR.

CASTOR D2.1 Public Page 171 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

UC4.US3b - Optimal path selection

As a neutral host operator, I want CASTOR to calculate and establish optimal paths between an I-UPF
and the anchor UPF, in order to satisfy the agreed SSLA requirements in terms of {high availability,
high reliability, medium bandwidth, path integrity}.

User Story Confirmation

The MNO provides the requirements to establish an SSLA in the backhaul network. While a UAV mission
operator is in progress, the MNO confirms with the UAV operator that the mission is executed smoothly
as a result of the optimal paths established by CASTOR.

User Story Workflow

1. The MNO provisions an SSLA with requirements in terms of high availability, high reliability, medium
bandwidth and path integrity.

2. The infrastructure layer reports trustworthiness evidence and trustworthiness claims to the Global
TAF.

3. The Global TAF updates the topology graph to the facility layer.

4. The facility layer provides the topology graph and path profile requirements to the traffic engineering
policy engine.

5. The traffic engineering policy engine requests new paths from the optimization engine, and sends
the new paths to the facility layer.

6. Finally, the facility layer enforces the new traffic engineering policy to the infrastructure layer, in
order to adhere to the SSLA.

Figure 8.35: Workflow of UC4.UC3b

CASTOR D2.1 Public Page 172 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 8.32: CASTOR KPIs for user story UC4.US3b

KPI Definition Target Value
Latency within the

Data Network
One-way delay between the UAV and the
Swarm Manager, considering the overhead
introduced by CASTOR.

≤ 5% compared to the
nominal operation.

Reliability % of packet loss considering both network and
integrity compromises on the infrastructure
layer, with CASTOR converging on a new path.

+ 20% improvement from
the baseline value, with
investigation of possible
dependencies between
CASTOR TE decisions in
inter-connected domains.

8.6 Trust-Aware UAV Data Delivery Across Mobile Edge Attach-
ments

Although the existing CASTOR use cases explore a wide range of trust-aware routing scenarios, what is
still missing is an integrated demonstration of how CASTOR’s orchestration layer interacts with application-
level services and far-edge compute nodes, closing the loop between trust assessment, policy enforce-
ment, and application behaviour. To this end, this Proof of Concept (PoC) scenario addresses this gap
by placing orchestration, and especially the interaction between CASTOR’s orchestrator, application or-
chestrators, and far-edge domains, at the centre of the scenario.

Figure 8.36: PoC Scenario

In Figure 8.36, the main components of the scenario are illustrated. The use case specifically focuses on
trusted fire detection and dissemination of alerts. Its novelty lies in the fact that trust-related assessments
can also be investigated at the far edge, including entities (e.g., UAVs) themselves acting as both UEs

CASTOR D2.1 Public Page 173 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

and compute nodes, where integrity, telemetry provenance, and device posture contribute directly to
end-to-end trust decisions. The key system components are the following:

• Field Edge Domain: This domain contains all sensing and edge-processing components that
generate the fire-alert events:

– Edge Sensors & IoT Gateways: Devices (e.g., thermal cameras, environmental sensors) de-
tect fire indicators and produce alert messages. The gateway aggregates readings, performs
local filtering, and prepares the alert for uplink transmission through the network.

– UAVs / Edge Compute Nodes: UAVs can augment sensing or relay information. Importantly,
this use case allows exploring trust evaluation at the far edge itself (e.g., UAV firmware state,
gateway integrity), something not addressed in prior UCs. This extends CASTOR’s trust as-
sessment beyond routers, toward UE/edge-side posture.

• Network Operator Domain (Unified Domain: Access + Core + Transport): All connectivity in-
frastructure — radio access, core network functions, and IP/SR transport — is considered one pro-
grammable trust-aware domain: Provides the full forwarding path from the field edge toward Civil
Protection systems. Routers, switches, and VNFs supply telemetry, configuration proofs, perfor-
mance indicators, and trust evidence to CASTOR. SDN and Segment Routing (SR-TE) controllers
implement the forwarding policies dictated by CASTOR. CASTOR computes the trust level for each
network segment.

• CASTOR Orchestrator Layer: CASTOR performs continuous, network-wide trust assessment and
trust-aware routing: Aggregates telemetry and trust metadata from routers, SDN controllers, and
optionally edge nodes. Evaluates the trust posture of available SR paths and selects the one that
satisfies policy constraints. Exposes only the active SSLA tier (not raw trust values) to the applica-
tion orchestrator (WSMO). Triggers rerouting when trust degrades, preserving service continuity for
time-critical fire alerts.

• WINGS Orchestration Layer (WSMO) and wi.BREATHE application: This layer is the entry point
for fire detection services. It receives field-edge alerts and manages the life cycle of fire-detection
workflows. Interacts with CASTOR to get the active trust tier, adapting application behaviour as
needed. Orchestrates the application workloads (offloads between edge and cloud domains, etc.)

• Civil Protection Domain (Central Alert System): The final destination of validated alerts, which
consumes the events exposed by the WSMO to receive fire-alert notifications delivered also through
a CASTOR-verified path. Triggers operational response (dispatch vehicles, helicopters, emergency
units).

In the figure, the results of three phases are depicted. In Phase A, field-edge alerts are sent to the WS-
MO/wi.BREATHE application; in Phase B, the fire-detection service notifies the CAS about the incident
(fire); and in Phase C, the CAS informs the respective response units.

If the Trust Exposure Layer of CASTOR framework in the Network Operator Domain indicates that no
SLA- or SSLA-compliant paths are available, the WSMO interprets this as an insufficient trust budget and
orchestrates the UAV/Edge – based data analysis. The resulting fire-detection output is conveyed to the
CAS within the Civil Protection Domain. So, in this case, the UAV/Edge must evaluate the trustworthiness
of the fire detection itself. Otherwise, the proper indicators, after data pre-processing, are sent to cloud
based wi.BREATHE instance, in order to execute the fire detection service. At service/application level,
trust is linked to the provenance of the workflow execution, service-plane correctness (if the inputs are
partially degraded, e.g. two sensors are offline, the service should not construct artificial trust, but instead
explicitly express uncertainty) and adherence to SLO targets relevant to fire detection. Particularly, the
provenance of the workflow execution, ensuring that every fire detection decision can be traced back

CASTOR D2.1 Public Page 174 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

to the specific model version, configuration parameters, execution domain (field edge domain or WINGS
domain, in this case), and the identity that triggered the process. This guarantees verifiable accountability,
reproducibility of results, and transparent evidence for the Civil Protection authorities. The fire detection
results are sent to the CAS together with a trust estimation and an indication that the information transfer
was carried out through a path that meets the SLA requirements, thereby reducing service response time
and ensuring that the ongoing situation cannot exhibit significant deviation from the one indicated in the
alert signal. This is further supported by the fact that the life cycle of the fire-detection process is on the
order of seconds. A high trust level prompts the CAS to immediately propagate the alert messages to the
relevant consumers.

CASTOR D2.1 Public Page 175 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 9

CASTOR Framework Requirements

This chapter, as its name suggests, thoroughly describes the key requirements that characterize CAS-
TOR throughout its framework. These requirements encompass security, functional, and non-functional
considerations that are essential for the successful operation of the overarching CASTOR Trust Assess-
ment functionalities. Following a top-down approach for identifying and delineating the requirements,
the chapter initially presents the overarching security requirements and needs of the CASTOR frame-
work as a whole (top), and then proceeds to the functional and non-functional requirements associ-
ated with each operation and technology within the CASTOR traffic engineering process and pipeline
(bottom).

As aforementioned, CASTOR architecture coalesces between different technologies stemming from trusted
and confidential computing to risk assessment and trust assessment. For each of these technologies
or functionalities, we have not only captured the requirements that each technology/functionality must
achieve and exhibit whey operated in a stand-alone manner, but also those properties that they need to
be able to expose as part of an overall trust execution architecture (e.g., trusted path routing ecosystem).
In other words, the main goal is to capture all these dependencies that can allow the overall vision of
CASTOR.

Recall that CASTOR evasions to engrain trust as part of traffic engineering process considering adaptive
to changes trust mechanisms for capturing the device state (e.g., trustworthiness state) of each element
in the path. Thus, all functional requirements should analysed from a functional perspective such as
the necessary dependencies to properly operate and for performance stand point as close to real time
as possible to be seamless on the service provider’s users. Thus, the present chapter details the crit-
ical requirements that will form the basis of the core technical requirements and set the scene for the
preliminary designs, implementations and evaluations within CASTOR.

Towards this direction, the chapter begins by establishing the overarching Security Requirements
(see section 9.1) of the framework. These requirements do not target specific artifacts within the system.
Instead, this whole set of security requirements capture all the necessary security and trust requirements
in the process of the overall CASTOR framework, from the far edge all the way to the orchestration
layer. Recall that in order for this goal to be achieved, CASTOR is based on adaptive to changes mech-
anisms capturing the trust state of the underline devices. Thus, these security requirements include the
properties that the far edge and the routing plane should be equipped to provide verifiable evidence for
confidentiality, privacy, etc. requirements that drive the abstraction of trust evidence.

CASTOR D2.1 Public Page 176 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 9.1: Functional & Non-functional Requirement Categories

Functional &
Non-functional
Requirement
Categories

Description

Trust Assessment
Requirements
(see sub-section

9.2.1)

These requirements involve all the functional and non-functional requirements
to unlock the evidence- based theory of trust assessment in order to establish
and maintain the trust level of the router and the path.

Router Operational
Assurance

(see sub-section
9.2.2)

These requirements involve all the functional and non-functional requirements
of router’s trust extensions in order to provide/share their trust evidence in a
secure and verifiable manner.

Trust-aware Service
Assurance

(see sub-section
9.2.3)

These requirements involve all the functional and non-functional requirements
of the trust aware management of the deployed services, including both (a)
how to establish and enforce the trust policies and (b) how to monitor that no
violation have been occurred.

Traffic Engineering
Requirements
(see sub-section

9.2.4)

These requirements involve all the functional and non-functional requirements
and are explicitly focused on traffic engineering, capturing both the intra- and
inter- domain aspects (cross-domain).

Having set the scene with these requirements, then we proceed with the specific set of functional
and non-functional requirements for each one of the core technologies (detailed in Chapter 6) we
consider in CASTOR (see section 9.2). Within the CASTOR architecture and its key artifacts, there are
four crucial subcategories that are investigated: i) the Trust Assessment Framework, which defines
the mechanisms for assessing and establishing trustworthiness across the routing plane, elevating trust
from node-centric to path-centric trust characterizations; ii) the router operational assurances, which
comprise the foundational hardware and software elements within a network element and are responsible
for supporting the execution of trust-related operations through the provision (in a verifiable manner) of
the necessary trustworthiness evidence; iii) the trust-aware service assurance capabilities that focus
on the overall requirements that CASTOR needs to accommodate at the Orchestration Layer and above;
and iv) the traffic engineering requirements which establish the characteristics in the forwarding plane
so as to allow the incorporation of trust characteristics in the routing path provisioning considering both
intra- and inter-domain scenarios. All these requirements are also crucial for the long-term success and
sustainability of incorporation of robust and flexible trusted path routing considerations supported by the
CASTOR framework.

It also has to be noted that most of the requirements discussed above pertain to the functional capabilities
of the overall CASTOR framework. However, in certain cases, this chapter also introduces non-functional
requirements to emphasize key aspects of the end-to-end CASTOR framework that constitute the driving
factors that affect the use case KPIs as defined in Chapter 8. This ensures that no unnecessary over-
head is imposed and, consequently, that the operational behaviour of the application workload traversing
the provisioned routing policies remains unaffected. Table 9.1 below summarises these four identified
requirement categories along with a short description to set the scene for the subsequent sections (see
section 9.2).

CASTOR D2.1 Public Page 177 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.1 Overarching Security Requirements

Table 9.2: SR.1 Device-support for Hardware-based Root of Trust

SR.1
Title Device-support for Hardware-based Root of Trust

Actors
Involved

TNDE

Type Security Requirement
Description Background: CASTOR’s overarching goal is to enable trusted path routing for networks, i.e., a

trust-aware path provisioning that takes the security of the network nodes into account. To achieve
this, the CASTOR orchestrator must continuously assess the trust level of each network node based
on collected security claims. However, this requires the CASTOR orchestrator to be able to establish
trust in its device-side components (especially the TNDE) on each network node as they form the
device-side trusted computing base (TCB) for the evidence collection and trust assessment of the
router nodes.

Therefore, network nodes need to be equipped with a root of trust (RoT) that provides the necessary
security capabilities for CASTOR’s device-side components to report on their integrity and securely
generate and manage security claims over the trustworthiness of the device’s TNDIs. Otherwise, the
CASTOR orchestrator will not be able to establish trust in the device nodes and securely verify the
trustworthiness claims of the network topology.

Description: The network devices must provide a hardware-based root of trust (HW RoT) forming a
trust anchor on top of which CASTOR can establish trust in its device-side components (especially
the TNDE). The HW RoT needs to provide capabilities for secure measurement, storage, and
reporting / attestation. That is, the HW RoT must support the secure measurement of CASTOR’s
device-side TCB components in a verifiable way, allowing the CASTOR orchestrator to perform a
secure remote attestation of the device TCB.

Furthermore, the HW RoT needs to support the secure and flexible storage and management of
code, data, and cryptographic keys forming the foundation of CASTOR’s secure key management
(outlined in SR.3), as required for the verifiable generation and sharing (SR.9) of trustworthiness
evidence. Finally, CASTOR requires the HW RoT to provide anti-rollback protection capabilities for
stored data and deployed software. This is necessary to enable CASTOR to enforce or verify that
the intended security policies (SR.4) are enforced by the expected / up-to-date on-device software
components (e.g., TNDE), preventing rollback attacks resulting in outdated policy or software
versions (SR.5).

Remarks: CASTOR’s device-side components shall be conceptually agnostic to the underline
specific HW RoT implementation to support a variety of devices from different vendors. Therefore,
CASTOR plans to explore different HW RoTs in the context of virtual routers (vRouters) based on,
e.g., secure enclaves (Intel SGX), virtualization, or TPMs, as we will further described in deliverable
D3.1.

Connected to
other

requirements

SR.2, SR.3, SR.4, SR.5, SR.9

KPIs
Description Value

KPIs
Number of operations sup-
ported by the underlying RoT

≥ 3 operations

Table 9.3: SR.2 HW-based Isolation of CASTOR’s device-side TCB Components

SR.2
Title HW-based Isolation of CASTOR’s device-side TCB Components

Actors
Involved

TNDE

Type Security Requirement

CASTOR D2.1 Public Page 178 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: Each network node willing to participate in CASTOR’s trusted path routing needs to
be equipped with CASTOR’s device-side components, including CASTOR’s TNDE and associated
Trace Units (cf. subsection 6.2.8).

As described in SR.1, it is crucial that CASTOR can establish trust in its device-side components
as they form the TCB for the trust assessment of the network nodes and eventually enable the
enforcement of trusted path routing policies. CASTOR strives for a minimal TCB size on the devices
to decrease the risk of vulnerabilities and allow for easier code audits. However, as the network
devices also host the (potentially complex) software stacks of one or multiple TNDIs that might be
target of an attack, CASTOR’s device-side TCB components need to be securely isolated.

Description: CASTOR’s device-side trusted computing base (TCB) components must be securely
isolated from the remaining network device software stacks (e.g., the NOS and routing services of
the TNDIs) in a remotely verifiable manner using hardware-based primitives. That is, the isolation
must enable the creation of a trusted execution environment (TEE) based on an underlying RoT (as
defined in SR.1) that provides strong (runtime) confidentiality and integrity guarantees for the code
and data of CASTOR’s device-side TCB components and can be remotely verified by the CASTOR
orchestrator.

That way, CASTOR can verify that its device-side TCB components can securely generate trust-
worthiness evidence of TNDIs and enforce the orchestrator’s security policies for the trusted path
routing. CASTOR’s device-side TCB components shall be conceptually agnostic to the specific iso-
lation primitives and RoT implementation (SR.1) to support a variety of devices from different vendors.

Remarks: (1) CASTOR is responsible for isolating its TCB components from the TNDIs (e.g.,
vRouters) and enabling secure, independent management and trust assessment of each TNDI
(e.g., see SR.6). If a device hosts multiple TNDIs, CASTOR assumes them to be isolatable from
each other (potentially in an implementation- or device-specific way), such that TNDIs can not
directly compromise each other. (2) CASTOR’s device-side TCB components include the TNDE and
associated Trace Units (cf. subsection 6.2.8). If additional components are included in the network
device, TCB depends on the implementation-specific TCB of the underlying isolation primitives and
root of trust (RoT). Depending on the device platform, the isolation could for instance be realized
using a CPU TEE (e.g., Intel SGX and Arm TrustZone) or virtualization (e.g., containing TNDIs inside
the VMs).

Connected to
other

requirements

SR.1, SR.6

Description Value
KPIs

Fine-grained control over en-
clave behaviour

< 200ms, including TCB layout planning, execution-flow design and
dynamic linking of secure modules, clear specification of the inter-
faces between the trusted and non-trusted worlds, choice of secure-
storage mechanisms, and configuration of the attestation mecha-
nisms.

Table 9.4: SR.3 Secure Device Key Management with Platform and TNDI Binding Support

SR.3
Title Secure Device Key Management with Platform and TNDI Binding Support

Actors
Involved

TNDE, TNDI

Type Security Requirement

CASTOR D2.1 Public Page 179 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: CASTOR needs to (a) establish trust into the device-side components (e.g., CASTOR
TNDE) and (b) establish various communication channels with them in order to perform the local
trust assessment (of TNDIs), receive device-side trustworthiness evidence for the global Trust
Assessment Framework (TAF), and enforce configurations for the trusted path routing (TPR).

Thus, is of paramount importance for all the associated authentication, attestation, and secure
communication (channel) establishment tasks, the device side components to manage cryptographic
keys in a secure way.

Description: CASTOR’s device-side trusted computing base (TCB) needs to support the secure
derivation, management, and storage of cryptographic keys for the required authentication, attes-
tation, and data protection operations. That is, CASTOR’s TCB needs to support different types
of keys for different cryptographic schemes, such as attestation keys for onboarding or evidence
reporting, signing keys to generate verifiable runtime traces of TNDIs, or communication keys for
secure communication with the CASTOR orchestrator.

Furthermore, CASTOR’s device-side TCB needs to provide flexibility in the key derivation process for
each key, e.g., to achieve specific bindings. In particular, the device-side TCB needs to support the
optional binding of keys to the device platform, CASTOR’s device-side TCB components (e.g., the
TNDE), and/or a device’s onboarded TNDIs in order to allow for strong cryptographic authentication
and provenance.

Remarks: The details of the key derivation, binding, and storage operations might depend on
implementation specifics of a network element’s supported hardware Root of Trust (SR.1) and
isolation mechanisms (SR.2).

Connected to
other

requirements

SR.1, SR.2, SR.4, SR.6, SR.7, SR.16, TNDE.R.1

Description Value
Efficiency of key hierarchy con-
struction with different types of
keys

< 60ms
This KPI considers the construction of the appropriate key hierarchies
comprising all of the necessary cryptographic primitives and keys,
needed in order to support the entire lifecycle of a routing element
(i.e., from its JOIN/ONBOARDING phases to its trust related evidence
sharing)KPIs

Types of keys to be supported ≥ 4 keys
For instance these type of keys could be endorsement/identity key,
storage key, attestation key, communication/session key and ORE key
etc.

Table 9.5: SR.4 Runtime Configuration Integrity Check of Routing Plane Sw/Hw Stack

SR.4
Title Runtime Configuration Integrity Check of Routing Plane Sw/Hw Stack

Actors
Involved

Attestation Source, TNDE, Trust Assessment Framework

Type Security Requirement

CASTOR D2.1 Public Page 180 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: A critical aspect in ensuring the trustworthiness of the routing plane - a key objective
of the IETF Trusted Path Routing specification - lies in the evaluation of the security posture of the
underlying Infrastructure Layer. This involves the validation of the configuration and software integrity
of the underlying network elements, enabling the secure provisioning of services with certain security
guarantees. However, as we move to higher levels of assurance, this validation may also span
across the runtime operational assurance of a router (to be discussed in SR.13).

Such guarantees are of paramount importance in communication channels in both the control plane
and the data plane. Regarding the former case, it is crucial to safeguard the management interfaces
between the orchestration layer and the routing elements. This allows for the secure and confidential
configuration and management of the routing elements - and as a consequence the entire topology
- throughout their lifecycle. At the same time, in the context of highly sensitive workloads, the latter
case involves the exchange of certain security guarantees between the router elements of a ”Trusted
Topology” - a term used throughout the IETF Trusted Path Routing specification - to ensure the
posture of the provisioned data path.

The aforementioned security guarantees on the configuration/software integrity as well as on the
operational assurance of the infrastructure layer may vary depending on the policy associated with
the high-level domain requirements and the threat model that is taken into account. These may span
from design-time security properties (e.g., does a router have secure boot capabilities) up to the
behavioural evaluation of critical regions of the routing services; the latter case is further analysed in
SR.13.

Description: The routing plane shall support the continuous verification of software components
operating on routing elements in order to guarantee the integrity and trustworthiness of the entire in-
frastructure layer. By ensuring that only trusted and unmodified components are permitted to execute
and interact with each other, the system can maintain a robust security posture. This is particularly
crucial for high-criticality services that have a direct impact on the safety of the application users
(e.g., road users in the context of the V2X-related use cases of CASTOR). The continuous evaluation
of the configuration and software integrity of a routing element can be realized through attestation
processes capable of verifying and reporting the trustworthiness of the entire routing plane: from
a single network element to a routing path (see SR.14). Attestation enablers and cryptographic
techniques have the ability to produce evidence that verifies the reliability of these components.
Using this dynamic assessment enables the system to make informed decisions regarding the
trustworthiness of individual software components. To achieve this trust characterization, it is
essential that all elements are equipped with robust security enablers - e.g., hardware-based Root
of Trust - to support attestation processes for securely collecting, storing, and reporting attestation
claims to a verifier entity; be it a neighbouring routing element, or a controller entity residing at the
orchestration layer.

As part of the envisioned in-router TNDE framework, CASTOR aims to provide the necessary attes-
tation enablers that are responsible for:

• Dynamically Assessing the security posture through Verifiable Evidence: The Attes-
tation Source, as part of the overall CASTOR’s TNDE platform, dynamically evaluates the
integrity of software building blocks, allowing only trusted components to execute and interact
with other entities in either the data-plane or the control-plane entities.

• Supporting the provisioning of different Levels of Assurance: To support trustworthiness
assessments across different domain requirements, CASTOR will explore the adoption of a
”Levels of Assurance” scheme to map the requirements captured in the path profile catalogue
to the types of evidence that must be provided by the Attestation Source. Aligning with the
high-level Level of Assurance concepts introduced by ETSI [60], this classification shall estab-
lish clear distinctions in trust levels, enabling informed decision-making and the application of
appropriate security measures for each component.

Remarks: The freshness of the attestation evidence - the same applies to other types of trustwor-
thiness evidence - is one crucial aspect that needs to be reflected both in the attestation processes
specified in the context of CASTOR as well as the trust assessment calculations. To accommodate
any requirements on trust decisions under tight timing constraints, the attestation evidence may
be cached. In this case, the CASTOR Trust Assessment Framework shall adjust the derived trust
opinion accordingly so as to reflect the ageing of the available evidence in the trust quantification
process (e.g., this may lead to a higher uncertainty in the derived trust opinions).

CASTOR D2.1 Public Page 181 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Connected to
other

requirements

SR.1, SR.2, SR.3, SR.8, SR.9, SR.11, SR.12, SR.13, SR.14

Description Value
Native Runtime performance
for the execution of a local at-
testation process

< 200ms considering the instantiation and execution of the attesta-
tion process outside of the CASTOR TNDE environment - i.e., outside
of a TEE.KPIs

Runtime performance for the
execution of a local attestation
process

≤ 10% overhead, considering the instantiation and execution of the
attestation process as part of the TNDE environment - i.e., within a
TEE. The outcome of this process is the trustworthiness evidence
from the Attestation Source, which will be processed by the Trust As-
sessment Framework. (either the TNDE’s Local TAF agent or the
Global TAF at the orchestration layer).

Table 9.6: SR.5 Dynamic Security Function Placement

SR.5
Title Dynamic Security Function Placement

Actors
Involved

TNDE, Service Orchestrator

Type Security Requirement
Background: In emerging B5G/6G environments, it is increasingly necessary for underlying
network resources to support services of mixed criticality, each with distinct performance and trust
requirements. Within the context of CASTOR, the infrastructure layer must therefore demonstrate
specific capabilities that enable the establishment of routing paths with well-defined network and trust
guarantees. In Chapter 6, it becomes clear that the CASTOR TNDE constitutes the core in-router
enabler for providing the trust-related guarantees to the Orchestration Layer so that it can make
informed decisions on (through the Optimization Engine) whether to take into consideration specific
network segments as part of the traffic engineering process. Based on the trustworthiness evidence
that can be collected during runtime, the Global TAF is able to evaluate whether or not a router
instance (i.e., TNDI) can act as a Path Element in a path profile with specific trust requirements as
specified by the network operator.

Through the enforcement of a Trust Policy, the Orchestration Layer is able to instruct a TNDE to
provide guarantees that it can satisfy a particular Level of Assurance (see SR.4). In other words, this
introduces the need for re-configuring the underlying Trusted Computing Base in order to securely
monitor specific regions of the target TNDI environment and allow the construction of particular
trustworthiness claims associated with the operator’s requirements. For example, in the case of
commodity workflows there may be no requirement with respect to the trust capabilities of a TNDI -
i.e., thus, no Trust Policy needs to be activated. However, when considering sensitive workflows that
require strong guarantees of confidentiality and integrity in the provisioned routing paths, this creates
the need to securely extract trustworthiness evidence from the underlying routers. Such evidence
may range from simple attestation quotes ensuring the secure launch of a TNDI (e.g., a network
element has securely booted) or more complex attestation reports that provide runtime guarantees
on the runtime integrity of critical router services.

Description: Given the diversity of the trust characteristics offered in a service catalogue, and the
dynamic nature of the routing plane (e.g., as new services are being fulfilled), it becomes essential
that the security mechanisms can be dynamically placed, ensuring an optimal use of the resources
required to achieve a required Level of Assurance. Specifically, due to the dynamic nature of
the routing plane, existing guarantees may not always be sufficient to ensure that the previously
computed ATL values continue to satisfy the established RTL constraints. There are multiple reasons
that may lead to this situation. The overall risk posture may worsen—for example, following the
discovery of a new zero-day vulnerability—requiring the router to provide stronger trustworthiness
evidence to maintain its Level of Assurance.

CASTOR D2.1 Public Page 182 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Alternatively, the domain operator may choose to enhance the trustworthiness capabilities of a
specific router to achieve a higher Level of Assurance, enabling it to support services with more
demanding path profile requirements. In the context of the CASTOR framework, the ability to
dynamically provision the capabilities of the TNDE consists of updating the raw traces that need to
be reported to the Tracing Hub, reconfiguring the Trust Sources - namely the Attestation Source and
the FSM - as well as configuring the Local TAF agent calculations. This allows the latter agent to
yield local trustworthiness claims that can be shared with the Global TAF at the Orchestration Layer.

Connected to
other

requirements

SR.3, SR.4, SR.5, SR.7, OSS.R.1

Description Value
KPIs Security Control Enforcement

Runtime Performance
< 100 ms focusing on the verifiable update of the Key Restriction
Usage Policy binded to the additional evidence monitored for the ver-
ification of the newly activated security controls.

Granularity of level of assur-
ance that can be achieved by
the CASTOR TCB

5. CASTOR will adopt and build on top of the classification of LoA
specified by ETSI [60] in the context of compute continuums for map-
ping specific LoAs to define path profiles representing varying levels
of network and trust metrics.

Table 9.7: SR.6 Onboarding of Network Devices and their TNDIs into CASTOR

SR.6
Title Onboarding of Network Devices and their TNDIs into CASTOR

Actors
Involved

TNDE, TNDI, Service Orchestrator

Type Security Requirement
Description Background: CASTOR follows a zero-trust model w.r.t. the network devices participating in the

trusted path routing. That is, before CASTOR allows the TNDIs of a network device to participate, the
CASTOR orchestrator needs to establish trust into the device TCB to ensure that it is equipped with
CASTOR’s device-side components and provides the necessary security capabilities. Furthermore,
the orchestrator needs to configure the TNDE and TNDIs to continuously assess the trust level of
TNDIs to check that they satisfy the (minimum) required trust level, and enforce the trusted path
routing policies on the TNDIs. That is, CASTOR requires a secure process to let network devices
join the CASTOR domain and to onboard their TNDIs.

Description: CASTOR’s device-side TCB components must enable the CASTOR orchestrator
to securely join network devices into its network domain (join phase) and perform a trustworthy
onboarding of the device TNDIs that are supposed to take part in the trusted path routing (onboarding
phase). If a network device provides multiple TNDIs (e.g., vRouter instances), the TNDE needs to
allow for an onboarding and configuration of each TNDI independent of the other TNDIs. During
the join phase, the CASTOR device-side TNDE must enable the orchestrator to securely attest the
device-side TCB components and their protection. Furthermore, the TNDE must enable the orches-
trator to securely start the onboarding process of the device TNDIs and allow for the generation
of the required attestation and communication keys for the TNDIs (related to SR.3). During the
onboarding phase, the CASTOR TNDE must enable the orchestrator to securely assess (attest) a
TNDI’s TCB and deploy configurations for the evidence tracing and trust assessment process (trust
policy) of that TNDI. Furthermore, the TNDE must enable the establishment of cryptographic keys
and secure channels for the evidence authentication and reporting (cf. SR.7 and SR.9).

Remarks: (1) After a device has joined and an associated TNDI has been onboarded to a CASTOR
domain, the orchestrator is supposed to be able to securely assess the trust level of that TNDI based
on the traces, evidence, and ATL values exposed by the TNDE for that TNDI. (2) A TNDI shall only
be actively onboarded to a single CASTOR domain at a time (see TNDE.R.1). (3) The onboarding
process and future re-configurations of an onboarded TNDI are supposed to be controlled via a
secure TNDI-SP control channel (see SR.7).

Connected to
other

requirements

SR.1, SR.2, SR.3, SR.7, SR.9, TNDE.R.1, TNDE.R.2

CASTOR D2.1 Public Page 183 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Value
Execution of CASTOR JOIN
Protocol

≤ 220ms
Note: This refers to the JOIN phase of the remote attestation process
of CASTOR’s TNDE, assuming that the TNDE is up and running, and
excluding network latency and TNDI-SP control channel establish-
ment.KPIs

Execution of CASTOR ON-
BOARDING Protocol.

< 900ms Including the following processes:

• Attestation of TNDI,

• establishment of CASTOR-related keys,

• setup of Tracing Hub (with at least one Trace Unit),

≤ 1.3s, including the authenticated querying of the appropriate Trust
Policy through the CASTOR DLT.

Note: The KPI values refer to the core attestation process of the TNDI
to be on-boarded, excluding any network latency. The evaluated as-
sumes a successful JOIN process and the establishment of the nec-
essary TNDI-SP control channel. The specified KPIs do not capture
the actions that take place after a successful completion of the ON-
BOARDING protocol : (a) the establishment of the relevant TNDI-SP
data channels for evidence transmission, (b) the issuance of the Con-
formity Certificate for the newly on-boarded TNDI in the topology, or
(c) the exchange of trust-related evidence between the TNDIs.

Table 9.8: SR.7 Secure E2E CASTOR-to-Device Control and Data Channels

SR.7
Title Secure E2E CASTOR-to-Device Control and Data Channels

Actors
Involved

CASTOR orchestrator services, TNDE, TNDI

Type Security Requirement
Background: For the CASTOR orchestrator be able to calculate and provision trust-aware network
paths, it must be able to securely communicate with the network devices of its topology, specifically
the CASTOR device-side TCB components (e.g., TNDE). The orchestrator requires a control
channel to add network devices to its topology (cf. join and onboarding phases in SR.6) and push
configurations (e.g., trust policies) to enforce trusted path routing. Furthermore, the CASTOR
framework requires data channels to efficiently exchange security claims required for the trust
assessment of the onboarded TNDIs (cf. SR.9 for details). However, as CASTOR follows a zero-trust
model, CASTOR requires these channels to provide strong mutual authentication and protection
of the associated control and data messages against man-in-the-middle attackers (e.g., on-path
network attackers, untrusted on-device software).

Description: CASTOR must support secure E2E control and data channels (TNDI-SP channels,
cf. subsection 6.2.8) between the device TNDEs and the CASTOR upper layer services. The
channels must provide end-to-end encryption guarantees, providing confidentiality, integrity, au-
thentication, and replay protection. The communication and authentication keys must be securely
established between the orchestrator and TNDE components, potentially binding them to the TNDE
platform and/or TNDIs associated with the channels (cf. SR.3). The control channel must support
strong attestation-based authentication of the device-side TCB components (especially the TNDE)
and support secure control messages for configuring and enforcing security policies, e.g., for the
runtime tracing of TNDIs, their trust assessment (trust policies), and the enforcement of trusted
paths. The control channel might allow the TNDE to authenticate/identify the CASTOR orchestrator
which has onboarded a given TNDI (mutual authentication). The data channels must support mutual
authentication with optional attestation support where applicable (e.g., CASTOR DLT) and support
secure and efficient transportation of runtime traces and trustworthiness evidence (cf. SR.9 for
details). They should be configurable to provide different transport and security tradeoffs depending
on the destination endpoints and transported data types (Section 6.2.9.2). Both channel types must
provide reliable transport, i.e., take care of message reordering or drops.

CASTOR D2.1 Public Page 184 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Remarks: (1) This requirement refers to CASTOR’s envisioned TNDI-SP protocol which is intended
to provide TNDE/TNDI-bound control and data channels. The control channels are intended for
communication from the orchestrator to the TNDEs and the data channels for communication
between TNDEs and the CASTOR Global TAF or DLT. (2) Attestation support is considered for the
TNDEs based on the underlying device HW RoT (SR.1 and SR.2), for the TNDIs as enabled by the
TNDEs, and potentially for the secure oracle of the CASTOR DLT (e.g., Intel SGX-based Phala).

Connected to
other

requirements

SR.1, SR.2, SR.3, SR.6, SR.9, TNDE.R.2

Description Value
Establishment of a TNDI-SP
control channel <= 800 ms

KPIs
Establishment of a TNDI-SP
data channel <= 2 sec

Table 9.9: SR.8 Secure and Efficient Cryptography

SR.8
Title Secure and Efficient Cryptography

Actors
Involved

TNDE, Trust Assessment Framework, CASTOR DLT

Type Security Requirement

Background: A fundamental principle of traffic engineering is to ensure that data is delivered
reliably and within acceptable time bounds, thereby optimizing overall network performance and
user experience. To maintain optimal Quality of Service (QoS) metrics — such as latency, or
throughput — the routing operations shall incur minimal processing and communication overhead.
This becomes even more critical in domains involving highly sensitive or real-time applications, such
as the ones envisioned in the CASTOR use cases: from UAV operations to V2X communications.
In these contexts, routing performance directly influences operational safety, reliability, and user
experience. Consequently, while the incorporation of security measures is essential to ensure
trusted path routing, it is necessary to prioritise the design of schemes that enhance security without
compromising the responsiveness or stability of the routing plane, nor the service overlays that
depend upon it.

The aforementioned security measures relate to the protection of the management interfaces (i.e.,
from network elements to the upper control-plane layers) but also on the interactions between
network elements. Regarding the former part, this involves the confidentiality and integrity of the
communication channels, ensuring the secure management of network elements throughout their
lifecycle. Regarding the latter aspect, as we move towards trusted path routing, it is essential that the
appropriate guarantees — in the form of cryptographic proofs — are efficiently propagated across
the routing plane to establish and maintain a Trusted Network. Consequently, it is imperative to
evaluate and adapt existing schemes to meet the diverse requirements of the Compute Continuum,
taking into account both intra- and inter-domain scenarios.

Description: The employed cryptographic mechanisms shall be sound, secure, and lightweight.
Through the investigation and proposal of new efficient crypto schemes, CASTOR envisions to
unlock all security requirements that enable low-level operations such as authentication of entities,
secure collection and reporting of trustworthiness evidence, but also establishing secure and confi-
dential communication channels. At the same time, these operations will help establish core security
requirements for the trust-aware service provisioning in CASTOR; from the secure on-boarding
of new TNDIs up to the continuous monitoring and evaluation of the operational assurance of a TNDI.

CASTOR D2.1 Public Page 185 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Finally, given the diverse operations across the Compute Continuum—for example, from the
establishment of secure and authenticated channels between a TNDE and the Global TAF at the
orchestration layer, to the in-router trust evaluation of a TNDI’s integrity — it becomes evident
that cryptographic mechanisms must satisfy different performance requirements. Therefore, the
cryptographic primitives envisioned for design and implementation within the CASTOR framework
will be evaluated across various metrics, including their runtime performance in key operations as
well as the characteristics of the generated cryptographic outputs (e.g., issued certificates or digital
signatures).

Based also on the security requirements presented in this Chapter, CASTOR envisions to investigate
the design of lightweight crypto for the following operations:

• enable the establishment of secure communication channels from TNDE entities to the
Orchestration Layer. (see SR.7)

• enable the provision of aggregated attestation proofs that characterize the state of an
entire path of router elements. For example, this may allow the secure and efficient collec-
tion of trustworthiness evidence, enabling the Global TAF to form trust opinions on path-level
propositions (SR.12).

• share trust capabilities characterizing the infrastructure layer to external entities, without
disclosing any redundant or sensitive information to external verifiers. In this context,
CASTOR will evaluate Order Revealing Encryption (ORE) schemes to protect trustworthiness
claims by disclosing e.g., only the minimum trustworthiness value representing a domain-
internal trusted segment. This value is paired with zero-knowledge assertions that ensure
the hidden trustworthiness values of the other nodes or links within the infrastructure layer
maintain their correct relative order, thereby preserving confidentiality while enabling verifiable
trust relationships (SR.14).

Remarks: Adhering to zero-trust principles, all cryptographic mechanisms in CASTOR shall be
supported by specific RoT capabilities (SR.1), enabling the formation of the CASTOR TCB (SR.2)
— a core security requirement for provisioning the in-router TNDE ecosystem. Given that the
envisioned cryptographic schemes will be instantiated across the CC, it is necessary to account for
the heterogeneity of the underlying host environments and their diverse RoT capabilities. Therefore,
one of CASTOR’s key priorities is to ensure cryptographic agility in its designs. Considering the
varying capabilities of network elements — routers from different vendors may integrate distinct
HW/SW security modules — the proposed schemes will be designed to remain interoperable and
HW-agnostic.

Connected to
other

requirements

SR.1, SR.2, SR.7, SR.9, SR.10, SR.12, SR.14

Description Value
Cryptographic Throughput ≥ 100 operations per seccond (e.g., sign/verify, encryption/decryp-

tion)
Crypto agility: Number of
crypto primitives that can be
supported for different router
modalities

≥ 2 crypto primitives that can be supported (e.g., vRouter images,
HW router equipment)

KPIs

Computational overhead ≤ 30% overhead introduced due to the CPU cycles for the crypto
operation execution. This will include the detailed benchmarking of all
crypto operations, needed to support the CASTOR trust assessment
considering the existence (or not) of RoT guarantees.

Table 9.10: SR.9 Secure Reporting of Traces and Trustworthiness Data

SR.9
Title Secure Reporting of Traces and Trustworthiness Data

Actors
Involved

TNDE

Type Security Requirement

CASTOR D2.1 Public Page 186 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: CASTOR’s trust-aware path provisioning requires the CASTOR framework to
continuously assess and monitor the trust levels of all network nodes (or more precisely: the
onboarded TNDIs). To do so, CASTOR requires a secure way to share trustworthiness data of
TNDIs within the CASTOR domain. That is, CASTOR needs to securely distribute runtime traces,
evidence, and ATLs generated by CASTOR’s device-side components (esp. the TNDE) locally
across the TCB components (e.g., traces passed to Trust Sources) and remotely to CASTOR’s
upper layer components (especially Gloabl TAF and DLT). That way, CASTOR’s upper layer services
can securely collect the required data to perform the global trust assessment of the network
topology, provision trust-aware paths, and support auditing of suspicious device behaviour on an
incident. In addition, CASTOR’s TNDIs might need to exchange evidence to attest each other
to bootstrap secure communication links (see details in SR.10). In all cases, CASTOR needs to
preserve the integrity and authenticity guarantees of the exchanged data to allow for their verification.

Description: CASTOR must support the secure reporting of runtime traces and trustworthiness
data of a TNDI (evidence, ATLs): 1. across CASTOR’s device-side TCB components (TNDE, Tracing
Units), 2. to upper layer CASTOR services of a TNDI’s CASTOR domain (Global TAF), and 3. towards
neighbouring TNDIs. CASTOR’s device-side TCB components must enable the verification of the
integrity and authenticity of their generated TNDI traces and trustworthiness data. The reporting
must preserve these integrity and authentication guarantees, allow for freshness guarantees for the
trustworthiness evidence, and provide confidentiality against external entities. The sharing shall be
configurable to provide different transport and/or security tradeoffs depending on the type of reported
data (traces vs. evidence) and destination endpoint (SR.7, SR.10, and section 6.2.9.2).

Remarks: (1) The reporting to upper-layer CASTOR components is planned via TNDI-SP data
channels (see SR.7). (2) Within the TNDE, the traces are passed to the Trust Sources and the
TN-DSM, evidence is passed to the Local TAF Agent and the TN-DSM, and the ATLs and trust
reports are passed to the TN-DSM. (3) Traces, evidence, ATLs and trust reports are remotely shared
with upper layer CASTOR components. (4) TNDIs might exchange their boot-time or even runtime
evidence with neighboring TNDIs to establish trustworthy links (see SR.10). If sharing with TNDIs
outside a TNDI’s CASTOR domain needs to be supported, the orchestrator must configure it to not
leak sensitive data (e.g., not share traces, selective evidence sharing).

Connected to
other

requirements

SR.1, SR.3, SR.7, SR.10, SR.11, SR.16, TAF.R.1, TAF.R.4

Description Value
Data curation: pre-processing
of traces by Tracing Hub (or its
Trace Units) for secure sharing
with internal Trust Sources (i.e.,
FSM and Attestation sources)

≤ 10x(length of critical path)
Note: This is highly dependent on the complexity of the traced binary
which translates to different volumes of data to be curated prior to
runtime verification.

Trace Authentication: Tracing
Hub authenticating the traces
as part of secure sharing with
internal Trust Sources

≤ 20ms for the TNDE’s Tracing Hub to validate the authenticity of the
traces captured by a Trace Unit.

KPIs

Secure sharing of trustworthi-
ness claims (including the time
needed for the construction and
signing of the trustworthiness
claims) outside of the TNDE

≤ 800ms, out of which 80ms will be needed for the construction of
fresh TNDI-SP session keys. Network latency is excluded from this
value.
≤ 700 Bytes size, assuming one trust property of interest.
Note: Size of trustworthiness claim is dependent on the number of
trust properties that are reported.

Table 9.11: SR.10 Secure Link Establishment between TNDIs

SR.10
Title Secure Link Establishment between TNDIs

Actors
Involved

TNDE, TNDI, Service Orchestrator

Type Security Requirement

CASTOR D2.1 Public Page 187 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: CASTOR’s goal is to enable trusted path routing. Therefore, CASTOR continuously
assesses the trust level of the network topology in order to provision trust-aware paths that satisfy
requested security and performance requirements. To allow secure enforcement of the trusted
routing paths, neighbouring TNDIs of the CASTOR domain must be able to securely exchange
control and data plane network traffic, i.e., routing information and the actual application traffic.
Otherwise, network attackers or rogue TNDIs might be able to leak or tamper with traffic, breaking
the required security guarantees. Therefore, CASTOR requires a secure way for its TNDIs to
establish trust in each other and exchange traffic. In addition, if trusted inter-domain path routing is
required, TNDIs might need to securely communicate to TNDIs of other CASTOR domains. While
the IETF TPR [27] proposes incorporating TPM-based measurements into secure link protocols
(e.g., MACsec), the current proposal neither considers runtime evidence nor the incorporation into a
trusted TNDI onboarding process, unlike CASTOR.

Description: CASTOR’s device-side components need to enable the establishment of trustworthy
links between neighbouring TNDIs, allowing the secure exchange of network traffic. The link estab-
lishment needs to allow TNDIs to establish trust into each other based on the secure exchange of
load-time and runtime evidence information, collected via CASTOR’s device-side TCB components
(esp. TNDE). The types of exchanged evidence need to be configurable to account for differences
in available evidence (e.g., boot-up vs. runtime, different device vendors) and to prevent leakage of
sensitive evidence towards TNDIs of different CASTOR domains. The links should support a periodic
re-exchange of fresh runtime evidence in order to allow for the continuos re-establishment of a link’s
trustworthiness if requested by the CASTOR orchestrator(s). The established links are supposed to
provide E2E protection for the control and data plane network traffic routed through them, including
confidentiality, integrity, (evidence-augmented) authentication, and replay protection guarantees.

Remarks: (1) The establishment of secure links between neighbouring TNDIs of the same CASTOR
domain is supposed to happen as part of the TNDI onboarding process (see SR.6), or following
upon it. (2) If secure links need to be established between TNDIs of different CASTOR domains, the
orchestrator shall configure sharing policies that prevent leakage of sensitive evidence (see SR.9).

Connected to
other

requirements

SR.1, SR.3, SR.6, SR.9

Description Value
Issuance of Conformity Certifi-
cate during TNDI onboarding

≤ 200ms for the realization of the Local TAF evaluating the on-
boarding requirements as expressed in the available Trust Policy.
≤ 600ms Note: This includes the construction of the Conformity Cer-
tificate, once the onboarding has been successfully carried out. This
includes the execution of the trust enablers to provide the necessary
evidence on the static properties of the underlying router element.KPIs

Selective Disclosure of re-
quired properties for the E2E
TNDI link establishment.

≤ 150ms, this includes the construction of the Verifiable Presenta-
tion over the superset of evaluated properties/attributes (mix of static
properties and runtime configuration and behavioural properties).

Table 9.12: SR.11 Secure Runtime Tracing Support of TNDIs

SR.11
Title Secure Runtime Tracing Support of TNDIs

Actors
Involved

TNDE, TNDI

Type Security Requirement

CASTOR D2.1 Public Page 188 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: CASTOR’s trust-aware path provisioning requires a continuous trust assessment of
the network topology (i.e., the onboarded TNDIs). CASTOR’s global trust assessment is based on
evidence and local trust level calculations of each TNDI, provided by CASTOR’s TNDE (cf. SR.9).
However, to allow for the generation of trustworthiness evidence, CASTOR’s device-side components
need to provide secure runtime tracing capabilities forming the basis of the evidence. In addition,
as the required traces depend on the expected types of evidence that need to be generated by the
Trust Sources (TAF.R.4), CASTOR requires flexibility w.r.t. the deployed Trace Units and support for
dynamic re-configuration (re-programmability) of the tracing. Such flexibility enables the CASTOR
orchestrator to choose and adjust Trace Units based on the required level of granularity, performance,
and security (threat model) for the runtime tracing of TNDIs.

Description: CASTOR’s device-side TCB components must enable secure tracing of a TNDI’s
configurational and behavioural runtime information. The tracing must be (re-)configurable by the
CASTOR orchestrator (see SR.6, SR.7, OSS.R.1) to allow taking the requirements for the evidence
generation by different Trust Sources into account. That is, the CASTOR orchestrator should be able
to change what runtime information is traced, e.g., by asking the TNDE to reconfigure active Trace
Units or deploy additional Trace Units with different granularity, performance, or security tradeoffs
(see subsection 6.2.9). The tracing must be secure within the boundaries of the Trace Units’ threat
model(s). That is, attackers within the scope of the threat model must neither be able to disable nor
tamper with the runtime tracing mechanisms or the generated traces. Furthermore, a compromised
TNDI must not be able to tamper with the tracing configurations or the operation of the TNDE.

Remarks: (1) The Tracing Hub is part of CASTOR’s device-side TNDE and is responsible for man-
aging the trace collection. It is strongly isolated from the traced TNDIs (see SR.2). (2) CASTOR’s
Tracing Hub supports multiple different Trace Units as part of its multi-level tracing architecture (see
subsection 6.2.9). Each Trace Unit can provide different tradeoffs (level of granularity, performance,
security), allowing for differences in their threat models. For instance, a memory inspection-based
Trace Unit might be strongly isolated from the TNDI, while a kernel-level Trace Unit might or might not
be integrated in the TNDI’s OS stack depending on the defined threat model (see subsection 6.2.9).

Connected to
other

requirements

SR.2, SR.6, SR.7, SR.9, SR.13, TAF.R.4, OSS.R.1

Description Value
Support different Trace Units
for the verifiable extraction of
varying device-state attributes

≥ 2 for the verifiable measurement during runtime of the configuration
integrity of a TNDI and the verifiable extraction of the execution flow
of a critical function path.

Control flow extraction (with an
OS-level Trace Unit)

≤ 5% overhead on the normal operation of the target binary to be
traced.
Note: This is usually in the order of nano seconds unless a complex
binary (e.g., a virtual router containerized image) needs to be traced.

KPIs

Configuration measurement
extraction performance over-
head

< 8× (length of target function critical path). Length of
critical path is equivalent to the number of functions, whose config-
uration needs to be monitored dynamically.

Table 9.13: SR.12 Composition of Trustworthiness Evidence

SR.12
Title Composition of Trustworthiness Evidence (SURREY)

Actors
Involved

TNDE

Type Security Requirement

CASTOR D2.1 Public Page 189 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: In the CASTOR TAF, a key challenge is to extend trust evaluations from the level of
individual nodes to entire paths. This can be approached by combining the trust opinions of all nodes
along a path, or alternatively, by gathering consolidated trustworthiness evidence directly at the path
level. The latter approach enables the construction of atomic trust relationships tied explicitly to
path-level evidence. This aligns with the IETF NASR concept [97], where NASR can assist operators
in attesting to an orchestrated path and providing verifiable forwarding proofs, thereby allowing
clients or authorities to audit the forwarding process.

Description: The routing plane shall provide verifiable evidence that attests to the validity of a
traffic engineering policy, ensuring that such attestation is performed efficiently. Within a segment
(domain), each router possesses the capability to autonomously generate a cryptographically
signed claim reflecting its current trust level and integrity status. The orchestrator, acting as a
centralized trust authority, can then perform a collective attestation of the entire segment of routers.
This process yields verifiable evidence attesting to the overall integrity of the constructed path. In
different domains, the attested claims are inherently designed to be verifiable by and linked to those
from neighbouring segments. Consequently, routers at segment boundaries may selectively verify
different subsets of a combined claim set, a process governed by dynamically defined attestation
policies that dictate the required scope and depth of verification.

CASTOR envisions addressing a challenge. The CASTOR Global TAF must be capable of evalu-
ating composite propositions that enable the elevation of ATL values from low-level (atomic) trust
propositions associated with network elements to ATL values at the path or even domain level.
This introduces several limitations when attempting to identify suitable logical expressions that can
accurately characterize the trustworthiness of complex trust objects. Deliverable D4.1 analyzes the
challenge involved in achieving an overarching Trust Assessment Framework.

Remarks: Based on the descriptions, we can conclude some points (1) there are multiple routers
(provers) (2) Cryptographically signed claims (proofs) from different routers (provers) can be
aggregated, which can be verified by any entity. (3) In inter-domain scenario, the confidentiality of
evidence should be considered. Further, there are some potential solutions: (1) BLS signature is
aggregatable, which can be used for composable attestation (2) The Merkle tree is a structure, which
can be used to aggregate signatures maintained by a trusted third party

Connected to
other

requirements

SR.14

KPIs
Description Value

KPIs
Runtime performance of the
verification of a composite at-
testation report

≤ 40ms, considering one attestation report involving at most 100
signers.

Table 9.14: SR.13 Runtime Operational Assurance and Process Execution Integrity Checks

SR.13
Title Runtime Operational Assurance and Process Execution Integrity Checks

Actors
Involved

Finite State Machine (FSM), TNDE

Type Security Requirement

CASTOR D2.1 Public Page 190 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: Capturing runtime behaviour is essential because static verification or pre-deployment
testing alone cannot guarantee the ongoing integrity of a device once it is exposed to real-world
conditions and potential attacks. By continuously or periodically monitoring the execution flow
and operational state of a router, it becomes possible to detect and explain such deviations from
expected behaviour that may indicate compromise, misconfiguration, or malicious activity (FSM.R.1,
FSM.R.2). Implementing such runtime monitoring, however, presents several challenges, especially
if the hardware constraints together with the performance requirements associated to the standard
operational services are taken into account. The solution requires tracing and monitoring mecha-
nisms capable of accurately capture and evaluate the execution flow of critical router components
with minimal performance impact, as well as ensure an efficient processing of these traces to detect
any violations against nominal operation in near real time.

Description: Deploying runtime behavioural monitoring solutions is a recommended approach to
ensure continuous verification of the router’s integrity and its operational correctness, even after
its deployment. This proactive approach not only strengthens the security of the router itself but
also enhances the overall security of the network in which the router is operating by ensuring that
itself and its services remain trustworthy throughout their lifecycle. This acts as an additional Trust
Source (along with the runtime configuration integrity verification presented in SR.4) coalescing
macroscopic behavioural assessment of a router’s critical execution path with Finite State Machine
models to enable efficient control flow integrity verification. More details about the FSM approach
taken in CASTOR can be found in Section 6.2.6.

Remarks: To tackle all these points, Finite State Machines (FSMs) models have been chosen
to represent the nominal operational behaviour of each router. These will be trained taking in
consideration the device architecture, its requirements and the specific threat model of its interest
(FSM.R.1); will provide augmented results including clarifications on the discrepancies identified
(FSM.R.2); and ensure that their evaluation is done in near real time as well as their overhead will
not impact the normal operations of the router. For clarification, the KPIs below focus only on the
necessary operations to be performed so that the the FSM models can operate effectively. This
excludes any integrity, authenticity or validity checks to be done on the traces received by the tracing
layer. The KPIs are also designed considering (i) model evaluations based on an optimised set of
traced information, i.e., only relevant information are shared to the FSM models, and (ii) the FSM
functionalities are considered to be executed outside of a TEE.

Connected to
other

requirements

FSM.R.1, FSM.R.2

KPIs Description Value
Time taken to parse and trans-
form all the collected traces
data

< 2 seconds

Time taken for the FSM model
to perform its analysis on the
parsed data

< 1 second

Attestation solution leverages
the TEE capabilities

Yes/No

Table 9.15: SR.14 Ordering of Attestation Evidence

SR.14
Title Ordering of Trustworthiness Claims

Actors
Involved

Trust Exposure Layer, Trust Assessment Framework

Type Security Requirement

CASTOR D2.1 Public Page 191 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: The exchange of trustworthiness evidence from network elements (i.e., TNDIs)
constitutes the corner stone for enabling the construction of a trust plane in a single domain. The
availability of such evidence - either processed locally in the routers or centrally at the orchestration
layer - unlocks the assessment of the trustworthiness of the routing plane. Consequently, this
enables trust evaluation to be elevated beyond the node level (e.g., assessing the integrity of a
router) to the link, segment, or even path level.

However, this path-level trust characterization becomes challenging, considering end-to-end service
provisioning -i.e., achieving service connectivity across multiple domains. In this context, it is
not as straightforward to construct an overarching trust plane as there is a limitation to the detail
(and amount) of trustworthiness evidence that can be exchanged between different domains. This
necessitates the exchange of specific trust-related data between domains, while ensuring that no
sensitive information regarding the network topology or router characteristics is disclosed.

Description: Each network operator shall be able to expose its trust capabilities to neighbouring
domains without disclosing any sensitive information with respect to the underlying topology.
CASTOR envisions to provide these exposure capabilities through the Trust Exposure Layer in
the form of Trust Summaries. The Trust Summary shall allow a verifying domain - domain B -
to get the necessary (cryptographic) guarantees that the domain in question - say domain A -
has not dropped below a minimum ATL value. Therefore, domain B can receive with minimum
ATL value of domain A without the latter entity disclosing any redundant information to the former one.

On this front, CASTOR envisions addressing two parallel challenges. First, the CASTOR Global
TAF must be capable of evaluating composite propositions that enable the elevation of ATL values
from low-level (atomic) trust propositions associated with network elements to ATL values at the
path or even domain level. This introduces several limitations when attempting to identify suitable
logical expressions that can accurately characterize the trustworthiness of complex trust objects.
Deliverable D4.1 analyzes the challenges involved in achieving an overarching Trust Assessment
Framework.

Second, the ATL scores on the composite path- or domain-level trust propositions are recorded
on the CASTOR DLT - through CASTOR’s Secure Oracle element. These ATL values need to be
exposed by the Trust Exposure Layer to other authorized stakeholders (e.g., neighbouring domains)
in a way that safeguards any sensitive information from the evaluated domain. In this context,
CASTOR will explore the use of Order-Revealing Encryption (ORE) schemes, which enables the
encoding of Trust Summaries in a manner that allows external entities to obtain meaningful insights
into a domain’s trust capabilities without revealing any information that could lead to profiling or the
full disclosure of the domain’s characteristics.

Remarks: (1) The minimum ATL for each domain should be achieved (2) The order of different ATLs
can be compared while maintaining confidentiality of the domain under evaluation. (3) In existing
ORE schemes, we can consider about multi-user settings of ORE scheme as potential solutions.

Connected to
other

requirements

SR.9

KPIs
Description Value
Time to generate comparison
tokens

≤ 450 ms for 100000 users.

Time to compare ≤200 ms, referring bit-by-bit comparison of a 64-bit message cor-
responding to ATL values that characterize a specific property in a
domain.

Table 9.16: SR.15 Secure Data Handling and Provenance

SR.15
Title Secure Data Handling and Provenance

Actors
Involved

TNDE, Trust Assessment Framework, CASTOR DLT

Type Security Requirement

CASTOR D2.1 Public Page 192 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Background: As mentioned in SR.8, one crucial security requirement in the context of traffic
engineering policy provisioning, involves the consideration of the trustworthiness of the underlying
routing plane. Therefore, it becomes crucial to establishing mechanisms that provide runtime
evidence for trust assessment and ensure appropriate data associations. In addition, as per SR.7
and SR.9, these mechanisms shall enable authenticated entities to trace trustworthiness evidence
back to their source of origin, allowing their association with the corresponding trust relationships
under evaluation. Such authenticated entities may belong to the control-plane of a domain in an
effort to analyze the available evidence and pinpoint a possible source of compromise. At the same,
it is also possible that external authorized stakeholders may want to access a snippet of evidence
that is associated to a specific network element or service as part of an auditing process or in order
to identify the root of cause that led to a particular defect. All in all, it becomes evident that the
heterogeneous environment of an infrastructure layer and the diversity of the use cases for accessing
trustworthiness evidence - or even raw traces - of particular topology regions of interest introduces
the need for enhanced stronger guarantees on the overall data provenance and secure data handling.

Description: Only authenticated and authorised entities and components should be able to link the
evidence back to the data source. The integration of appropriate cryptographic primitives allows for
the deployment of controlled linkability, safeguarding the privacy of entities while maintaining trust
mechanisms. Apart from employing cryptographic schemes to assess the trustworthiness of the
routing plane, CASTOR envisions to leverage mechanisms for providing verifiable evidence that
critical trust-related data have been processed by certified applications. This further enhances the
trustworthiness of the data and ensures that processing occurs only through authorised channels,
instilling confidence in the network domain and its offered services.

To further illustrate the need for ensuring data provenance and secure handling guarantees, we
consider an example stemming from the use cases. In the context of unmanned airspace operations
(see Section 8.2), a network operator shall ensure network connectivity that meets stringent network
performance and trust requirements in order to support critical workloads. For instance, radar traffic
must traverse a highly secure and confidential network path to reach the U-Space Service Supplier
connected to the radar zone network. In this context, the CASTOR framework ensures the fulfilment
and continuous assurance of the radar application service. If a violation occurs in any of the network
elements along the provisioned path, trustworthiness evidence - signalling the detected failure - is
reported by the CASTOR TNDE artifacts. Consequently, it becomes essential that authorized entities
— both internal (e.g., the Global TAF) and external (e.g., the central airspace authority consuming
radar data) — have access to these provenance updates. Such updates must be provided at an
appropriate level of abstraction, reflecting the current trustworthiness of the traffic without exposing
unnecessary or even sensitive detail.

Based on this example, CASTOR envisions to explore the following cases:

• Secure processing of trustworthiness claims as a provenance assertion characteriz-
ing the trust posture of a topology: Provide guarantees to an authorized interested party,
that the processing of trust-related data related to a particular domain or service is done in
a secure and confidential manner. In CASTOR, it is the Trust Exposure Layer which is able
to securely process the trust capabilities of a specific domain or service from the CASTOR
Blockhain. For this processing CASTOR aims to leverage computational resources that pos-
sess the necessary integrity and confidentiality guarantees - e.g., worker nodes running in
hardware isolation through the employment of TEEs. This is essential for sharing trust-related
provenance about the network guarantees of a service to external authorized stakeholders
(see Section 8.2), but also to provide a compliance report ensuring authorized auditors that
the established SSLAs are respected throughout the lifespan of a service (see Section 8.5).

• Accessing historical trustworthiness evidence and raw traces for post processing
analysis: Depending on the domain policies, raw traces and trustworthiness evidence coming
from the in-router TNDE artifacts are securely recorded on the CASTOR DLT. In CASTOR, we
plan to leverage a novel Attribute-Based Signcryption (ABSC) scheme that enables flexible
policy provisioning. This will allow TNDEs to report critical data confidentially, ensuring that
only authenticated and authorized entities—those possessing the required attributes—are
able to access the data. For example, router vendors may want to access specific set of raw
traces as diagnostic information to further analyze any defects of their equipment.

CASTOR D2.1 Public Page 193 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Connected to
other

requirements

SR.7, SR.8, SR.9

Description Value
Access control policy enforce-
ment on trustworthiness evi-
dence

< 2 sec
This is important in the case where only authorized users can ac-
cess historical trustworthiness evidence for post-processing analysis
in case of an identified incident (e.g., failure in the router firmware
which was caught by the CASTOR Attestation enablers).KPIs

Network domain privacy expo-
sure due to transmission of
trust capabilities to external re-
questers

FALSE
External requesters accessing the trust capabilities of a domain
through the Trust Exposure Layer shall not gain any sensitive infor-
mation that could potentially leak the topology characteristics of the
domain’s infrastructure layer.

CASTOR D2.1 Public Page 194 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.2 Functional and Non-Functional Requirements

9.2.1 Trust Assessment Requirements

Table 9.17: TAF.R.1 Generalizability

TAF.R.1
Title Generalizability

Actors
Involved

Trust Assessment Framework

Type Functional Requirement
Description Background: Assessing the trustworthiness across the CC is a difficult task due to the complexity

and the heterogeneity of the different layers: from far-edge to cloud infrastructures. In the context
of TE, there is a multitude of trustworthiness evaluations that need to be conducted by different
entities. Also, adhering to the concept of IETF’s TPR, network elements need to assess critical
behaviours of adjacent nodes before establishing secure links with each other. At the same time,
in the context of a managed network, it is also critical to allow the network controller to evaluate
the trustworthiness of the underlying topology. This necessitates the evaluation of the behaviour of
each network element individually, setting the path for more complex trust characterization at the
link, segment, or even path level. All these requirements introduce the need for a generalizable and
comprehensive trust modelling paradigm that allows for the expression of dynamic trust relationships
that dictate the necessary calculations for the final trust assessment. The envisioned TAF needs to
be applicable in the multitude of the different safety-critical scenarios that need to operate under the
zero-trust assumption and also capture the changes in the trustworthiness level that might occur
over time. This introduces the need for a generic mechanism, expressing target trust propositions of
different levels of atomicity. On one hand, CASTOR TAF needs to express and evaluate atomic trust
propositions that are intrinsically linked to the types of evidence that can be collected from the target
environment. For example, this is the case of a TAF instance evaluating the runtime configuration
integrity of a router’s software stack, as this allows the mapping of the derived ATL value with the
trustworthiness evidence that can be extracted from the Attestation Source offered by TNDE. On
the other hand, it is imperative that the TAF is generic enough to be applicable to the multitude of
the different requirements on services with mixed criticality. A generalizable TAF should be widely
applicable to different UC and would reduce or eliminate the customization effort for each scenario.
Ideally, it could even be updated and extended for use in completely novel UC or scenarios.

Description: CASTOR TAF shall be capable of assessing the trust level for any given scenario;
thus, any arbitrary trust model that includes different types of trust relationships, created among
heterogeneous trust objects for different properties. Trust relationships can extend from the router
level to the link and path levels. These direct trust relationships enable a Local TAF agent, to assess
the trustworthiness of a TNDI’s behavior using runtime traces monitored in the target environment.
Thus, the TNDE ecosystem relies on the Tracing Hub to collect and process traces from the
Trace Units, and on the Trust Sources to interpret these traces and provide meaningful, actionable
evidence to the Local TAF agent. Beyond these evaluations, CASTOR envisions to model referral
trust relationships allowing other TAF instances to infer the trustworthiness of a router element based
on previously established trust evaluations. Towards this direction, the TAF should accommodate
assessing trust based both on direct trust relationships but also using referral relationships that
enable leveraging trust assessments (or opinions) that have already been made by other entities.
Through the adoption of the Subjective Logic paradigm, CASTOR TAF shall be able to aggregate
the available trust opinions associated with the various trust relationships and reason - under a non
negligible level of uncertainty - about the trustworthiness of the required trust objects. In essence,
this involves using general methods to measure and calculate the ATL value for any given trust
proposition, while simultaneously identifying the RTL constraints that shape the final trust outcome.

Remarks: (1) Generalizability refers to the architecture and mode of operation of the TAF. Specifi-
cally, CASTOR TAF should be able to be adopted even in the context of new scenarios. However, the
appropriate trust models need to be defined for such scenarios, and generalizability should not be
confused with the need to have defined trust models for all scenarios to be encountered. (2) When
elevating the analysis to link- or path-centric trust relationships, an inherent dependency always
exists on the trustworthiness of the participating network elements.

CASTOR D2.1 Public Page 195 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Connected to
other

requirements

TAF.R.4

KPIs
Description Value

KPIs
Number of use cases =4 heterogeneous use cases necessitating the trust evaluation of

the underlying paths with different trust requirements and constraints

Table 9.18: TAF.R.2 Correctness

TAF.R.2
Title Correctness

Actors
Involved

Trust Assessment Framework

Type Functional Requirement
Description Background: It becomes apparent that qualitative, informal trustworthiness assessments are

insufficient for making informed decisions on whether an entity can be trusted. Instead, measurable,
and quantifiable metrics need to be defined. To this end, such metrics need to be defined to enable
the Trust Assessment Framework (TAF) to determine whether an entity can indeed be trusted. The
decisions rendered by the TAF must align with the actual trustworthiness of the entity in question.
For example, if an entity is malicious and, therefore, deliberately provides false trustworthiness
evidence to another entity, the TAF agent of the receiving entity should identify it as not trustworthy.
Hence, to make the decision on the trustworthiness of an entity, the level of trustworthiness of
a particular trustor towards this entity (i.e., trustee) is necessary. The entity for which the level
of trustworthiness, namely the Actual Trustworthiness Level (ATL), is determined is specified in
a trust proposition. To derive the ATL, trust sources that provide evidence for a trust object are
required. However, calculating the ATL of an entity is not sufficient to decide whether it can be
trusted. Therefore, in addition to the ATL, there needs to be a Required Trustworthiness Level (RTL)
that reflects the level of trustworthiness of an entity required in order to be characterised as trust-
worthy. By comparing the ATL and RTL, the TAF can decide whether to trust the corresponding entity.

Description: CASTOR TAF must be able to produce a correct ATL for a target trust proposition. For
complex evaluations, trust models need to be employed in order to capture all the trust relationships
between the trust objects in order to capture dynamic changes in the ATL calculations. For each
of these trust relationships, CASTOR TAF leverages trust sources to quantify a trust opinion for
each trust relationship. Based on the individual trust opinions, the final ATL for a proposition is
calculated. When there is a change in any of the relevant trust sources - e.g., a violation has been
detected by the FSM source capturing an abnormal behaviour in a critical router operation - this
shall be reflected accurately in the revised ATL. In addition, the ATL calculation shall express the
time evolution of the trust characterization. One the one hand, this may imply the consideration of
the freshness of the collected evidence in the trust quantification process. On the other hand, the
ATL trust scores should not only rely on the latest evidence available but also take into consideration
the previous trust evaluations in order to accurately reflect the trust posture of the target proposition
under evaluation. need to be reflected in the ATL scores. In principle, any change in a trust opinion
needs to be reflected in the corresponding ATL values of the (direct) atomic trust propositions (e.g.,
trust proposition related to the runtime integrity of router A stands) but also in all composite trust
propositions that depend on that trust opinion (e.g., trust proposition related to the integrity of a path
that includes router A as part of a path profile requirement).

Remarks: (1) It is assumed that these trust sources are not compromised and provide correct
evidence. (2) The ATL and the RTL may evolve dynamically. On the one hand, new evidence may
lead to a re-evaluation of the current ATL for a trust proposition, whereas on the other hand a revised
risk assessment may lead to a revised set of RTL values.

Connected to
other

requirements

TAF.R.3

Description Value
The evaluation of the TAF correctness in terms of trust characterization will be realized on a
scenario basis. For each of the CASTOR use cases the following scenarios are to be evaluated.

CASTOR D2.1 Public Page 196 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

KPIs Scenario 1: Correctness on
benign behaviour: Participating
trust objects report positive evi-
dence

In this context, it is expected that all atomic trust propositions and
any envisioned high-level composite trust propositions are deemed
as trustworthy by the participating TAF instances (i.e., Global TAF or
Local TAF agents).

Scenario 2: Correctness on
abnormal behaviour: At least
one of the participating entities
are considered compromised
and report negative trustworthi-
ness evidence

In this case, the violation detected any of the CASTOR Trust Sources
(i.e., Attestation or FSM source) shall be reflected in the correspond-
ing ATL calculations of the target trust propositions, yielding a final
outcome that characterizes the affected entities as untrustworthy.
Example 1: An enforced traffic engineering policy requires that all
participating routers exhibit configuration runtime integrity guarantees
(i.e., critical router software stack configuration is not tampered with).
If one of the routers gets compromised, the associated trustworthi-
ness evidence reported to the corresponding Local TAF agent should
lead to an untrustworthy trust decision compare, as opposed to the
previous scenario.
We expect that in ≥ 70 of successful attacks, leading to a compro-
mised network element in the infrastructure layer based on the un-
derlying threat model and the available evidence extracted from the
available Trust Sources, the affecting trust propositions should yield
ATL values that do not satisfy the RTL constraints.

Table 9.19: TAF.R.3 Robustness and Resilience

TAF.R.3
Title Robustness and Resilience

Actors
Involved

Trust Assessment Framework

Type Functional Requirement
Description Background: The continuous evaluation of trust within the CASTOR project must operate within

the highly dynamic and heterogeneous Compute Continuum (CC). The CC is inherently susceptible
to sudden and unpredictable disruptions, such as physical link failures, performance degradation
and the possibility of threat actors aiming to disrupt the network. Inevitably, several of these threats
may affect the behaviour of the Trust Assessment enablers and core logic. This relates especially
to the Local TAF agents deployed as part of the in-router CASTOR capabilities introduced by the
TNDE. Given the criticality of the CASTOR TAF as part of the trust-aware traffic engineering policy
provisioning, it is imperative to evaluate the resilience and robustness of the primary aspects that
enable the trust characterizations across the CC.

As per Chapter 6, Local TAF agents are part of the in-router TNDE artifacts that run in-tandem
with a TNDI. Even though this allows a Local TAF agent to be protected by adequate security
mechanisms—supported by hardware Root of Trust capabilities — there are still potential threat
vectors that could impact the trust calculations. Such attacks may lead to inaccurate ATL results
either by affecting the evidence collection process or even by tampering with the trust relationships
to compromise the ATL trust opinion calculations.

Description: The TAF must incorporate efficient mechanisms for robustness against possible
attacks, as well as resilience against potential operational failures. Such attacks may affect a
TAF instance to report inaccurate trustworthiness claims or even report no claims at all. When
considering the CC-wide CASTOR Trust Assessment Framework, it is critical to take into con-
sideration possible attacks on the federation between the different Local TAF agents and the
Global TAF centrally located at the Orchestration Layer. Overall, the CASTOR TAF must en-
sure continuous and reliable trust evaluation, as well as allow recovery and rapid adaptability to
manage dynamic trust environments thus mitigating the impact of compromised participating entities.

Remarks: Whilst a major factor of this requirement is concerned with remediation in the event that a
threat actor has compromised the network, it is equally important to consider non-malicious events
such as those caused by hardware and/or software failure, connectivity issues and performance
degradation.

CASTOR D2.1 Public Page 197 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Connected to
other

requirements

TAF.R.4

KPIs
Description Value

KPIs
Ability of the TAF to withstand
attacks targeting the functional
operation of the host environ-
ment

To ensure that the Local TAF agent operates securely within its host
environment, it must provide robust protection mechanisms that do
not compromise the router’s operational performance. Hence, it shall
exhibit an acceptable performance overhead on the overall TNDI per-
formance, ensuring no measurable degradation in the routing opera-
tional profile.

Table 9.20: TAF.R.4 Flexibility of Trust Sources

TAF.R.4
Title Flexibility of Trust Sources

Actors
Involved

Trust Assessment Framework

Type Functional Requirement
Description Background: The Zero-Trust principle is one of the fundamental concepts mentioned in the first TAF

functional requirement (TAF.R.1). This implies that no trust is assumed in the infrastructure layer
and all trust objects are considered to be possibly untrustworthy at the beginning. Thus, no initial
trust between the entities shall be assumed, but the trust between the entities shall be continuously
evaluated based on evidence.

The multitude of trust propositions involves diverse trust properties (e.g., integrity, resilience,
confidentiality) and a wide range of trust objects, enabling trust characterization from the behaviour
of a specific path segment up to the evaluation of an entire path. The selection of the target trust
propositions to be evaluated is intrinsically linked to the threat model that is taken into consideration.
Consequently, this complex and diverse landscape introduces the need for a wide variety of
trustworthiness evidence that need to be extracted from the target environment so as to quantify the
respective trust opinions and derive the final ATL values. This introduces the need for the overarching
CASTOR TAF to support multiple Trust Sources with different inherent characteristics that may affect
the trust engineering process (e.g., evidence quantification, deterministic or probabilistic evidence,
observation uncertainty, evidence extraction mechanisms).

Description: CASTOR encompasses a Trust Assessment Framework where multiple Trust Sources
share the collected evidence to be considered in the ATL derivation for the target trust propositions.
Through an abstract - yet extendable - Trust Source Manager, different Trust Sources may be
connected to a TAF instance in depending on the use case and evaluations of interest. Since each
Trust Source can rely on different raw traces from the target TNDI environment, it is essential to have
a robust and flexible Tracing Hub that can gather and process traces from various Trace Units (SR.11).

Adhering to the Zero-Trust paradigm, all types of trustworthiness evidence offered by any Trust
Source needs to be collected and reported in a secure and verifiable manner. This allows the TAF’s
Trust Source Manager to verify the provided evidence and accurately quantify its corresponding trust
opinion.

Information on the existence and enforcement of security mechanisms constitutes critical trust-
worthiness evidence that could be reported by multiple Trust Sources. In this context, several
hardware-based Trust Sources could be a TPM or a TEE. In parallel, software-related Trust Sources
may relate to firewall applications deployed as part of a router’s software stack (i.e., as part of the
TNDI) or even intrusion detection systems. Such Trust Sources may offer evidence acting as a proof
of ownership of a security property (e.g., TNDI has securely booted) or an indication of compromise
associated with a specific (probabilistic) confidence level.

Remarks: Both the core TAF logic and its associated Trust Sources comprise a TAF instance
which constitutes a trusted component within the TNDE. This implies that non-authenticated and
unauthorized Trust Sources cannot interact nor affect the trust calculations.

CASTOR D2.1 Public Page 198 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Connected to
other

requirements

SR.4, SR.11, SR.13, TAF.R.1

KPIs
Description Value

KPIs
Trust Sources integrated with
the TAF framework

>= 3 different trust sources are evaluated in the context of the use
cases.

Table 9.21: TAF.R.5 Performance of trust evaluations

TAF.R.5
Title Performance of trust evaluations

Actors
Involved

Trust Assessment Framework

Type Non-Functional Requirement
Description Background: The dynamic nature of the Compute Continuum (CC) necessitates that the Trust

Assessment Framework (TAF) operates under strict time requirements to support ongoing network
operations that demand low latency, such as high-priority V2X communications to allow trustworthy
communication among first responder units as well as the real-time sharing of data across vast and
complex networks of Unmanned Aerial Vehicles (UAVs). The nature of the TAF demands continuous
and dynamic trust assessment which inherently introduces challenges in relation to computational
overhead, energy consumption and network bandwidth due to the need for continuous monitoring
and evidence processing. It is therefore vital for the TAF to perform efficient and optimised trust
assessments in real-time, ensuring that their integration introduces no perceptible delay and/or
overhead to the overall network’s communications, nor does it affect the operational performance of
all participating entities in the network topology.

Description: The TAF should be able to assess the trustworthiness of an entity within strict time
requirements. In particular, the TAF should be able to calculate an Actual Trustworthiness Level
(ATL), and compare it against the Required Trustworthiness Level (RTL), under strict time constraints
with a maximum runtime delay of 100ms in both standalone and federated contexts. This is
achieved by each component of the TAF being responsible and accountable for performing optimised
calculations in real-time, introducing no additional overhead when integrated together into the TAF.
Various techniques should be incorporated into the TAF to facilitate such performance requirements.
For example, Subjective Logic (SL) implemented to form trust opinions should be done so with
efficiency in mind, optimising core processes such as fusion and discounting that will need to be
frequently conducted in all federated contexts and most standalone contexts. Furthermore, the ability
of the TAF to conduct trust assessments in a federated context lessens computational overhead on
individual Local TAFs, lessening their potential as bottlenecks. Local TAFs typically run on highly
resource-constrained devices and minimising complex trust calculations at this level will drastically
improve operational performance. As an example, Local TAFs should exclusively focus on the
evaluation of trust in relation to integrity, whereas trust evaluations in relation to other trust properties
(although still including integrity) should be handled by the Global TAF.

Remarks: It should be noted that with timing constraints comes a potential trade-off with the
accuracy of trustworthiness calculations. For example, a strict time requirement (i.e. requiring TAF
instantiation and execution within 100ms) may necessitate the evaluation of less trust sources, or the
processing of trust decisions at the local level rather than at the Global TAF. Optimising this trade-off
is dependent upon the given context, as whereas one scenario may value faster performance over
accuracy (such as real-time communication in a low-risk environment), other scenarios (that are
safety-critical) may instead prioritise accuracy.

Connected to
other

requirements

TAF.R.1

Description Value
Standalone TAF runtime perfor-
mance

≤ 100ms delay when the TAF is instantiated and executed as part
of the application software stack in the target system (i.e., Local TAF
agent in TNDI, or Global TAF on the controller plane collecting trust-
worthiness evidence from TNDE)

CASTOR D2.1 Public Page 199 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Federated TAF runtime perfor-
mance

≤ 100ms delay when the Global TAF is instantiated and interacts with
the underlying Local TAF agents

KPIs

NOTE: This does not include the time needed for the collection, processing and communication
from the entities (Global TAF - Local TAF agents - Trust Sources), while we are further excluding
any network latency caused by trust sources. The focus is only on the timing requirements of
the TAF operation and calculation of the ATL and evaluation against the specified RTL

Table 9.22: TAF.R.6 Scalability

TAF.R.6
Title Scalability

Actors
Involved

Trust Assessment Framework

Type Non-Functional Requirement
Description Background: When it comes to in-router trust assessment, the evaluations characterise the router

behaviour of the corresponding TNDI. Adhering to the IETF’s trusted path routing concepts, such
trust evaluations may also involve the trust posture of the neighbouring TNDIs. Hence, although
runtime performance remains a critical factor, there is no explicit requirement concerning the
scalability of the trust models. The trust relationships to be managed are inherently dynamic;
however, their number remains relatively limited.

However, this is not the case for the Global TAF running in the Orchestration Layer. In this context,
the trust models need to be able to cope with different sets of trust requirements coming from
multiple path profiles. This introduces different trust model instances that need to compose different
high-level trust propositions and compare them against different set of RTL constraints. At the same
time, the dynamic nature of routing path selection - as part of the traffic engineering process (e.g.,
automated flow steering within a segment routing TE policy) - necessitates continuous updates
to the underlying trust models in order to accurately represent the trust state at the path level.
Furthermore, the dynamic reconfiguration of the infrastructure topology, resulting from the enrolment
and detachment of router elements, introduces a highly dynamic and volatile environment that must
be effectively accommodated by the CASTOR Trust Assessment Framework (TAF).

Description: The CASTOR TAF shall be scalable in order to assess the trustworthiness levels
of all involved TNDI nodes within strict time requirements even if the number of nodes increases
dynamically. This also includes calculations at the link, segment, or path level. The TAF should also
be able to assess trustworthiness of every new TNDI node as part of the secure onboarding process.
This would imply that the TAF instances need to be able to quickly update, analyse, and break down
large trust models representing. Irrespective of the number of nodes in the model, the TAF needs
to be able to calculate the necessary Actual Trustworthiness Levels (ATLs) in a short period of time.
To avoid overloading a Local TAF agent with overwhelming trust computations that could hinder
the operational performance of a TNDI, CASTOR leverages the federation of the overarching TAF,
allowing the offloading of trust calculations to the Global TAF.

Connected to
other

requirements

TAF.R.5

Description Value
Trust objects/propositions sup-
ported in intra-domain

Local vs. Global TAF
KPIs

Trust models/sessions Local vs. Global TAF

CASTOR D2.1 Public Page 200 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.2.2 Router Operational Assurance

9.2.2.1 TNDE

Table 9.23: TNDE.R.1 Management of Network Device TNDIs

TNDE.R.1
Title Management of Network Device TNDIs

Actors
Involved

TNDE, TNDI, CASTOR orchestrator

Type Functional Requirement
Description Background: CASTOR provisions trust-aware paths that take the trust level of each node in the

network topology into account. By continuously re-assessing the trust levels of each node, CASTOR
can dynamically update the paths to satisfy requested security and performance requirements for
the routing.

The TNDE is CASTOR’s core component in the device-side TCB and responsible for exposing
the trustworthiness evidence and enforcing the trust-aware paths. In order to support a variety of
physical and virtual networking nodes, CASTOR introduces the concept of TNDIs—Trust Network
Device Interfaces (see chapter 6)—representing a functional unit capable of taking part in CASTOR’s
trusted path routing (e.g., a physical router, a vRouter, a routing compartment/partition within a
router). CASTOR’s device-side TCB needs to be able to manage the TNDIs of a device as a
pre-requisite for onboarding each of them into the CASTOR network and enabling trust assessment
and path enforcement.

Description: CASTOR’s TNDE needs to be able to manage the TNDI(s) of the underlying network
element (e.g., network device). Each of these TNDIs needs to provide the necessary capabilities
to take part in CASTOR’s trusted path routing. As detailed in SR.6, SR.11, and the related ones,
the TNDE needs to allow the CASTOR upper-layer services (especially the orchestrator-related
services) to interface with the TNDIs, e.g., to onboard them and enable the trust assessment
mechanism for them.

The TNDE needs to allow interfacing with each TNDI independently and shall manage their
associated security configurations and trust policies (e.g., runtime tracing—SR.11) separately. The
TNDE shall be able to associate TNDIs with their assigned CASTOR domain (see SR.7 on TNDI-SP
control channel) such that the TNDE can enforce that a TNDI is only actively onboarded to a single
CASTOR domain at a time.

Connected to
other

requirements

SR.2, SR.6, SR.7, SR.11

KPIs
Description Value

KPIs
Topology evaluation Large scale: ≤ 50 TNDI nodes, leveraging vRouter elements. Each

host environment spanning between one and 10 TNDIs

Small scale: 1 physical router (TPM-enabled Cisco Router, if avail-
able)

Table 9.24: TNDE.R.2 Dynamic Setup and Configuration of the TNDE and TNDIs (Re-/Programmability)

TNDE.R.2
Title Dynamic Setup and Configuration of the TNDE and TNDIs (Re-/Programmability)

Actors
Involved

TNDE, TNDI, CASTOR orchestrator

Type Functional Requirement

CASTOR D2.1 Public Page 201 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: The CASTOR orchestrator needs to provision trust-aware paths throughout its
network topology to enforce trusted path routing. However, this requires the CASTOR orchestrator
to be able to configure the network devices, such that they can be onboarded into the CASTOR
network and the trustworthiness data of them can be collected.

Otherwise, the CASTOR orchestrator cannot calculate the trust-aware paths and enforce them in the
network. Furthermore, the CASTOR orchestrator needs to be able to dynamically reconfigure the
network nodes to update the paths or enforce a new trust policy if trust levels or path requirements
change (i.e., dynamic re-programmability).

Description: CASTOR’s orchestrator needs to be able to remotely configure the TNDE and its
TNDIs via control channel messages. Based on that, the CASTOR orchestrator can add (join) a
network device to the CASTOR domain and onboard its TNDIs, configuring the TNDE components
and TNDIs as required for the trusted path routing. The onboarding allows to set up the tracing and
trust assessment for the TNDIs, as well as communication channels with the CASTOR upper layer
services (see SR.6 for details).

Furthermore, the TNDE shall enable the CASTOR orchestrator to dynamically reconfigure the TNDI
security configurations and trust policies to enable adjustments of the trust assessment and the
enforcement of different trust-aware routing paths (re-programmability).

Remarks: (1) As detailed in SR.6 and SR.7, a TNDI-SP control channel can serve as the secure
transport for the control messages between the CASTOR orchestrator and the device-side TNDE.
(2) The TN-DSM of CASTOR’s device-side TNDE can serve as the TNDI-SP control channel
endpoint, allowing the CASTOR orchestrator component to configure the TNDE subcomponents and
the TNDIs.

Connected to
other

requirements

TNDE.R.1, SR.6, SR.7, OSS.R.1

Description Value
KPIs

Runtime performance on en-
forcing of a new policy

≤ 1.3 sec, excluding network latency and assuming that the neces-
sary TNDI-SP control channel is in place.

In this scenario we envision to measure the time required for a TN-
DSM to fetch an updated Trust Policy and enforce it over an existing
one. The new Trust Policy may configure the Local TAF operations ei-
ther directly (e.g., update to the RTL constraints) or indirectly (update
to the frequency of trustworthiness evidence collection or reconfigu-
ration of a Trace Unit).

9.2.2.2 Evidence-based Monitoring

Table 9.25: FSM.R.1 Model optimisation and specialisation

FSM.R.1
Title Model optimisation and specialisation

Actors
Involved

Finite State Machine (FSM), TNDE

Type Functional Requirement

CASTOR D2.1 Public Page 202 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: Considering the operational functionalities and constraints of the routers under
analysis, a flexible, efficient and specifically trained monitoring model is required to achieve a more
resilient and secure monitoring solution. This process will take in consideration not only specific
runtime information collected by the tracing layer, but also the threat model associated to each
router, which could differ depending by the security experts or by the specific needs of each customer.

Description: The FSM models will be trained and optimised ad-hoc on each router’s requirement
to have the minimum number of internal states required to perform successful router’s behavioural
analysis, enabled by the types of traces collected at a lower level. To ensure maximum efficiency
and least impact on the system under analysis, the FSM models will be trained and optimised
offline based on real runtime traces captured by the tracing layer, and later securely deployed and
configured on each device once fully trained.

Remarks: By leveraging all these information, we aim to train a tailored model which will be more
effective than generic monitoring models, while being optimised to not violate the router’s operational
requirements. Each model generation process will need to find a good balance between efficiency
and accuracy, while also avoiding over-fitting models to specific cases. An accurate model might
require a bigger set of traced information that will impact its runtime evaluation and, therefore, its
efficiency and the overall overhead put on the system, but at the same time there is a need to have
an accurate model to provide meaningful attestation evidence.

Connected to
other

requirements

SR.13

KPIs Description Value
Model optimisations will also
depend on specific threat mod-
els

Yes/No

Table 9.26: FSM.R.2 Model explainability

FSM.R.2
Title Model explainability

Actors
Involved

Finite State Machine (FSM), TNDE

Type Functional Requirement
Description Background: Explainability of the alerts generated by monitoring models is essential because it

allows security experts, analysts and local trust agents to gather extra information about the context
and the reasoning behind the raised alert. This transparency not only helps in better understanding
the current status of the device, and potentially its surrounding infrastructure, but also leads to lower
time of alerts assessment and more prompt reaction times.

Description: The FSM models will be able to identify which traced actions are responsible for
behavioural anomalies.

Remarks: This extra information related to the detected anomalies will be provided by the FSM
models in an easily interpretable format, enabling immediate- and post-assessment analysis
performed by security experts and local trust agents. When necessary, the alerts will be generated
based on the runtime evaluation of the FSM model based on the runtime traces collected by the
tracing layer. During the model evaluation, contextual data about the potential current anomaly are
also been gathered and used to augment the alert itself to be provide extra evidence about it.

Connected to
other

requirements

SR.13

KPIs Description Value
Time taken to gather contextual
information

< 250 milliseconds

CASTOR D2.1 Public Page 203 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.2.3 Trust-aware Service Assurance

9.2.3.1 Orchestrator

Table 9.27: OSS.R.1 Secure Remote Asset Management and Reconfiguration Effectiveness

OSS.R.1
Title Secure Remote Asset Management and Reconfiguration Effectiveness

Actors
Involved

Service Orchestrator, TNDE, TNDI

Type Functional Requirement
Description Background: In distributed, trust-aware network environments such as CASTOR’s, remote man-

agement and reconfiguration of assets (e.g., routers, virtual network functions, edge nodes) are
essential for dynamic orchestration and lifecycle control. However, these operations introduce
significant attack surfaces, particularly during remote configuration updates, firmware provisioning,
and policy re-enforcement.

To maintain security and trustworthiness throughout the asset lifecycle, remote asset management
operations must be both secure and effective. This means that all configuration, monitoring, and
re-configuration activities must occur over authenticated and integrity-protected communicaton
channels, ensuring that no malicious entity can manipulate device states or device configurations.
CASTOR envisions this capability as an integral part of its trusted orchestration framework, enabling
safe and verifiable reconfiguration of network elements in response to evolving trust and/or perfor-
mance conditions.

Description: All configuration and reconfiguration commands must be authenticated, integrity-
verified, and logged to ensure accountability and traceability. These operations shall be conducted
only on assets securely on-boarded, showing proofs that they are adequately equipped with the
proper CASTOR TCB capabilities.

Key security and functional objectives include: (i) Dynamic updates to the trust and traffic engineering
policies enforced at the TNDI level (SR.7), including example mechanisms such as Segment Routing
Traffic Engineering policies enforced through a PCE element. (ii) Secure and verifiable collection of
trustworthiness evidence from managed assets towards the orchestration layer, enabling CASTOR
TAF to provide an accurate estimation of domain trustworthiness as perceived by the Service
Orchestrator. (iii) Enhanced telemetry for near-real-time reporting of trust-related metrics to the
orchestrator’s event monitoring tools. (iv) Verification and rollback capabilities ensuring recovery
from failed or unauthorized configuration attempts.

Remarks: (1) The implementation should be agnostic to the underlying management interface
employed, acknowledging that no single technology is uniformly supported across all vendors (e.g.,
the Cisco IOS XRv 9000 router does not support RESTCONF interfacing). The approach will
therefore focus on presenting well-defined network controller APIs compatible with well-established
orchestration tools, ensuring interoperability across heterogeneous environments. (2) Reconfigura-
tion actions should be latency-aware and designed not to disrupt ongoing services or established
trusted paths.

Connected to
other

requirements

SR.7, OSS.R.2

Description Value
KPIs

Container lifecycle manage-
ment (LCM) Operations [con-
trolled and uncontrolled ele-
ment configuration]. Instantia-
tion and termination time of vir-
tualized and hardware network
elements.

≤ 1sec for the instantiation of network element
≤ 10 sec for the reconfiguration of network element
≤ 20 sec for restarting network element
≤ 30 sec for the reconfiguration of network element which requires
restart of the element

CASTOR D2.1 Public Page 204 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 9.28: OSS.R.2 Trust- and Policy-driven Orchestration and Service Placement

OSS.R.2
Title Trust- and Policy-driven Orchestration and Service Placement

Actors
Involved

Service Orchestrator, Facility Layer

Type Functional Requirement
Description Background: In distributed, multi-domain network environments such as those envisioned in

CASTOR, the orchestration of services must optimize not only performance, scalability, and resource
utilization, but also the trustworthiness of the underlying infrastructure. The compute continuum,
from far-edge to cloud, introduces high heterogeneity in device capabilities, ownership domains, and
security postures. To ensure trustworthy end-to-end service delivery, CASTOR augments existing
Traffic Engineering (TE) approaches with trust metrics. Traditional TE objectives (e.g., latency,
bandwidth, load balancing) are extended with trust-related indicators derived from the TAF. At the
same time, orchestration decisions are guided by formally defined policies and intents that encode
business, security, and trust requirements, enabling CASTOR’s policy-driven orchestration model.
This approach ensures that service placement, routing, and lifecycle operations remain trust- and
policy-compliant, dynamically adapting to changing conditions while maintaining alignment with
pre-defined SSLAs.

Description: The service orchestrator shall expose and consume a policy-driven orchestration in-
terface that translates high-level intents and SSLA-derived trust/security policies into actionable or-
chestration directives. These directives drive trust- and network-aware service placement, ensuring
that orchestration decisions are simultaneously policy-compliant and trust-optimized. Key functional
capabilities include: (i) The orchestrator shall deploy services only on nodes that meet the required
trust thresholds as assessed by the TAF (actual trust level ≥ required trust level). (ii) The orches-
trator shall synchronize with the Optimization Engine to obtain trust- and performance-aware place-
ment recommendations, combining network state, TE metrics, and trust evidence. (iii) The resulting
placement and routing policies shall be enforced through the PCE for automated configuration, en-
suring consistency between orchestration intent and network-level realization (see TE.R.1). (iv) The
orchestrator shall support continuous monitoring and automatic adaptation—re-placement or path
re-optimization, when trust degradation or SSLA non-compliance is detected. (v) The orchestra-
tion interface shall expose endpoints to upper-layer management or exposure functions to, submit or
modify intents/policies, query trust/risk posture and SSLA compliance, subscribe to policy violation
or trust-score change events, and retrieve service lifecycle and compliance status.
Through these mechanisms, CASTOR enables end-to-end intent translation and enforcement,
ensuring that trust, security, and performance considerations are jointly reflected in orchestration
decisions across intra- and inter-domain environments.

Remarks:(1) Continuous synchronization between the service orchestrator, the TAF, and the
Optimization Engine is required to ensure that service placements and TE policies always reflect
the latest trust and network state. (2) The interface supports both automated policy enforcement
(via PCE) and manual configuration (via Facility Layer APIs or CNI layer), depending on deploy-
ment capabilities. (3) Cross-domain service provisioning is supported under the assumption of
pre-established SSLAs between cooperating domain operators, guaranteeing mutual trust and policy
compatibility. (4) Together, the trust- and policy-driven orchestration functions form a key enabler
for CASTOR’s intent-based automation vision, linking trust assurance, security compliance, and
operational efficiency.

Connected to
other

requirements

OSS.R.3, TE.R.1

KPIs
Description Value

KPIs
Synchronization latency to en-
force latest TE policy recom-
mendations by the Optimization
Engine.

Near real time < 5 sec for automated policy configuration via PCE.
No fixed threshold (measured value depends on API communication
latency) for manual policy configuration via Facility Layer, CNI layer
etc.

CASTOR D2.1 Public Page 205 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 9.29: OSS.R.3 Accurate and fresh synchronization of the network topology attributes and trust
assurance reports

OSS.R.3
Title Accurate and fresh synchronization of the network topology attributes and trust assurance reports

Actors
Involved

Service Orchestrator, Telemetry API

Type Functional Requirement
Description Background:In CASTOR’s distributed and trust-aware orchestration framework, the accuracy and

freshness of network topology information and trust levels are crucial for reliable service placement,
path computation, and enforcement. The orchestration layer relies on continuous updates about
topology state, including link metrics, node status, routing capabilities, and trust levels, to make in-
formed decisions. In traditional MANO or SDN environments, topology synchronization mechanisms
often operate in a best-effort manner and may not include trust- or risk-related metadata. However,
CASTOR’s architecture requires real-time, trust-enriched topology synchronization that integrates
both operational (e.g., link latency, throughput) and security/trust parameters (e.g., trust scores,
attestation state, data confidentiality). Furthermore, CASTOR’s orchestrator must not only deploy
and manage services but also continuously verify that active services remain compliant with their
SSLA-defined trust requirements, triggering appropriate countermeasures when violations occur.

Description: The service orchestrator shall maintain an accurate and continuously updated view of
the network topology by synchronizing with all relevant components across intra- and inter-domain
boundaries and ensure continuous trust assurance for all deployed services by verifying compliance
with SSLA policies and dynamic trust conditions. These operations must include both traditional
network attributes (e.g., utilization, routing state) and CASTOR-specific trust parameters provided
by the TAF and the risk assessment engine. This requirement enables the orchestrator and the
optimization engine to make consistent, context-aware, and trust-compliant orchestration decisions.
The synchronization process shall: (a) Support near real-time updates of topology and trust infor-
mation; (b) Detect and propagate topology or trust changes (e.g., node isolation, trust degradation);
(c) Ensure that all orchestration and policy decisions are based on the latest verified network state.
Regarding trust degradation, attestation failure, or SSLA non-compliance detection, the orchestrator
shall: (a) Initiate automated actions, such as service re-placement, isolation, or re-orchestration. (b)
Notify relevant CASTOR components (e.g., Policy Manager, Optimization Engine) to adapt service
configurations or paths accordingly. By these functions, CASTOR guarantees trust-consistent
orchestration, where both functional and trust dimensions of the network are continuously aligned.

Remarks: (1) The freshness of topology data directly affects the reliability of trust-aware orches-
tration, risk assessment, and optimization decisions. (2) Integration with telemetry and tracing
components ensures evidence-backed validation of topology states. (3) The orchestrator’s trust
assurance mechanisms must integrate both proactive (predictive trust monitoring) and reactive
(event-triggered remediation) approaches. (4) All of the trust-related information (e.g., Local TAF
agent trustworthiness claims or trustworthiness evidence from in-router Trust Sources) are available
at the Global TAF residing in the Orchestration Layer. This communication is realized through
appropriate TNDI-SP channels that are provisioned as part of the CASTOR framework. This allows
the Global TAF to properly discount the evaluations - that are provided by each router - appropriately
and derive the trust capabilities of the entire topology enabling the trust-aware service provisioning.
Using the discounting operator from subjective logic, the Global TAF refines its opinion by taking into
account not only the evidence provided by a router element but also the degree of trust placed in that
router. On a parallel note, as part of the enhancement of the real-time insights that are collected at
the orchestration layer, CASTOR envisions to extend well-established telemetry mechanisms (e.g.,
Prometheus interfaces) in order to share the local trustworthiness claims that are computed by the
Local TAF agents. This aims to provide enriched insights on the trustworthiness levels as perceived
by the Local TAF agents. (5) Evidence of trust compliance and service behavior should be securely
logged within the DLT infrastructure for transparency and auditability.

Connected to
other

requirements

OSS.R.1

KPIs
Description Value

KPIs
Secure telemetry freshness in-
terval

In the order of seconds

CASTOR D2.1 Public Page 206 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.2.3.2 Optimization

Table 9.30: OPT.R.1 Trusted Path Optimization

OPT.R.1
Title Trusted Path Optimization

Actors
Involved

Optimization Engine

Type Functional Requirement
Description Background: This requirement defines the ability of CASTOR’s Optimization Engine to compute

trusted, efficient trusted end-to-end paths across network segments that combine trust-level con-
straints and network-level performance metrics. The requirement operationalizes the outcome
Trust Assesment Framework (TAF) and Service Security Level Agreement (SSLA) enforcement into
the actual path computation. The goal is to ultimately guarantee that every path used within the
CASTOR frameworks respect the Required Trust Level (RTL) while maximizing resource efficiency.

Description: The Optimization Engine shall compute near-optimial end-to-end (ingress to egress)
trust paths for network services. It will jointly consider (a) node/link trust scores (ATLs), (b) user
SSLA constraints, (c) network metrics. It then outputs the ranked segment routing path candidates
annotated with compliance and cost indicators. It must provide inherent support for multi-objective
optimization balance trust with performance and other extra-functional metrics.

Remarks: (1) Supports inter/intra-domain usage. (2) Configurable weighting between trust and
performance. (3) Supports explicit SR path encoding. (4) Supports identification of the optimal set
of rules to enforce a dynamic trust-aware TE policy.

Note: Optimality gap is defined as the difference in minimal value of the objective function for an
optimisation problem, versus the value of objective function returned by heuristic search in the
Optimization Engine.

Connected to
other

requirements

TAF.R.1, OSS.R.3

KPIs
Description Value

KPIs
Optimality Gap (vs. Exhaustive
Oracle) on small examples.

≤ 10% (median)

Table 9.31: OPT.R.2 Network and attestation information

OPT.R.2
Title Network and Trust Objective Variables

Actors
Involved

Optimization Engine

Type Functional Requirement
Description Background: This requirement ensures that the optimization engine can work with live trust and

network telemetry. It bridges the gap between the trust layer and optimization process. It ensures
that routing decision remains consistent with current trust and network states.

Description: The Optimization Engine shall consume network performance metrics and attestation-
based trust data from TNDE/TNDI. It will integrate theses values into the path cost function. It
will penalize the segments with low or stale trust values, as described in explicit path identification
formulation . It will also allow configurable attenuation of trust decay over time. The Optimization
Engine will overcome challenge of integrating these diverse values in a cost function using weighted
average of the cost functions into a single overarching one or potential alternatives.

Remarks: (1) Ensures continuous synchronization with TNDE/TNDI and TAF. (2) Supports freshness
thresholds. (3) Supports configurable penalty functions.

CASTOR D2.1 Public Page 207 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Connected to
other

requirements

OPT.R.1, SR.9, TAF.R.4

KPIs
Description Value

KPIs
Selected path compliance with
ATL

100%

Table 9.32: OPT.R.3 Multi-path computation

OPT.R.3
Title Multi-path computation

Actors
Involved

Optimization Engine

Type Functional Requirement
Description Background: CASTOR requires not just a single ”optimal” path but a portfolio of diverse, compliant

paths to provide high availability and resilience (reliability). This requirement ensures redundancy
and potential load balancing but requiring Optimization Engine to compute multiple viable paths per
service. This requirement ensures rapid recovery and continuous SSLA compliance even under
failures or trust degradation.

Description: The Optimization Engine shall compute multiple alternative paths per service. It will
support K-best disjoint path algorithms while providing performance and trust compliance metrics for
reach.

Remarks: (1) Enables resilience (2) Enables load balancing (3) Enables fast failover

Connected to
other

requirements

OPT.R.1 , TE.R.4, OSS.R.3

KPIs
Description Value

KPIs
Alternative Paths per Request >= 2

KPIs
Average Optimization Engine
Service Time

<= Average Optimization Engine Invocation Arrival Time

Table 9.33: OPT.R.4 Re-optimization

OPT.R.4
Title Re-optimization

Actors
Involved

Optimization Engine

Type Functional Requirement
Description Background: CASTOR is designed for dynamic networks that evolve with trust levels, topologies, or

SLAs in a constant state of Flux. This requirement mandates that the Optimization Engine adapts
to the changing network. Thereby, optimization engine must be capable of re-evaluating existing
paths and recomputing alternatives when circumstances shift. These re-evaluations prevent static
trust violations and ensure service continuity when the nodes lost trust or new evidence become
available.

Description: The Optimization Engine shall support re-optimization. This reoptimization could be
triggered by changes in trust attributes, network parameters, or SLA requirements (or violations). It
shall enable checkpointing to allow search rollbacks for faster response time. Furthermore, it will
provide incremental updates for efficiency. It will provide tunable persistence depth to provide quality
vs computation trade-off, choosing wisely between re-calculating from scratch or starting from a
snapshot/checkpoint based on the complexity.

Remarks: (1) Improves reliability. (2) Improves Efficiency. (3) Supports partial re-computation use.
(4) Superioir solution than state-of-the-art IGP shortest path solution.

CASTOR D2.1 Public Page 208 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Connected to
other

requirements

OPT.R.1

KPIs
Description Value

KPIs
Re-optimization Success Rate ≥ 80%

Table 9.34: OPT.R.5 Optimization Scalability

OPT.R.5
Title Optimization Scalability

Actors
Involved

Optimization Engine

Type Non-Functional Requirement
Description Background: CASTOR framework is designed to be applied to large networks. Therefore, to be

practical, the Optimization Engine must also scale to large network topologies and workloads. This
requirement defines the performance expectations and computation design goals that ensure the
optimization process remains responsive even network sizes grow by an order of magnitude. It
provides a trade-off between accuracy and runtime by allowing heuristic and distributed execution
models.

Description: The optimization engine is able to solve the problem of trust path optimization problem
in practical time frame for real-world representative size instances.

Remarks: (1) Supports CPU/GPU acceleration and distributed execution. (2) exposes performance
scaling metrics to operators.

Connected to
other

requirements

OPT.R.1

KPIs
Description Value

KPIs
Problem Scaling Factor ≤ 2x (subexponential)

9.2.3.3 Risk Assessment

Table 9.35: RA.R.1 RTL Derivation and Management

RA.R.1
Title RTL Derivation and Management

Actors
Involved

Risk Assessment

Type Functional Requirement
Description Background: CASTOR operates under Zero-Trust principles where no implicit trust is granted

to any infrastructure element. The Risk Assessment Engine must quantify security requirements
by deriving RTL values that define the minimum trust thresholds infrastructure elements must
achieve. RTL values must capture varying trust requirements across three critical dimensions: first,
establishing minimum trust requirements for router onboarding to ensure only adequately secure
infrastructure elements can join the topology; second, expressing the diverse trust requirements of
different services in the service catalogue as specified in their respective SSLAs; and third, enabling
the Global TAF to determine the trust guarantees each node, link, and path can provide, thereby
allowing the Optimization Engine to match infrastructure capabilities with service requirements when
computing paths for specific path profiles.

CASTOR D2.1 Public Page 209 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Additionally, RTL derivation must account for router-specific factors that influence individual trust
requirements. Different router types from various vendors have distinct hardware security capa-
bilities that establish baseline trust levels, requiring vendor-specific RTL thresholds. Furthermore,
topological placement affects risk exposure, as routers in critical network positions require elevated
RTL values due to increased cascading attack risks. Finally, security control configurations vary
between individual routers, where identical hardware may have different RTL requirements based
on the specific security mechanisms actively enforced on each device. These RTL values serve as
fundamental constraints for trusted path selection, ensuring that only paths that meet the required
security posture are utilized for service provisioning. The derivation of RTLs must be based on
comprehensive threat and vulnerability analysis across the heterogeneous Compute Continuum,
accounting for the dynamic nature of emerging threats and evolving attack landscapes.

Description: The Risk Assessment Engine shall analyze threats and vulnerabilities across all layers
of the Compute Continuum to generate RTL values tailored to different service criticality levels as
expressed in SSLAs. The engine shall perform comprehensive threat modeling and risk assessment
(e.g., leveraging methodologies such as TARA), categorizing vulnerabilities from device-level
(memory-related, firmware exploits) to cross-layer threats across infrastructure software/hardware
stacks and network-level threats (routing manipulation, traffic analysis). Based on this analysis,
the engine shall construct risk graphs identifying vulnerability paths and dependencies, then map
identified attack types to necessary security controls, determining the minimum RTL required for
determining the minimum RTL required to satisfy each path profile in the service catalogue. The
engine shall obtain topology status via the Topology Graph in the Facility Layer, with asset topology
information provided by the Service Orchestrator. Additionally, failed attestation evidence and raw
traces may be shared to the CASTOR DLT for auditability purposes, enabling Security Administrators
to post-analyze and identify vulnerabilities or update risk assessments based on these risk indicators,
which can subsequently be reflected in the Risk Assessment Engine to update risk graphs and
affected RTL values. These RTL values serve as thresholds for the Trust Assessment Framework,
enabling the Optimization Engine to select paths where node/link ATLs exceed the required RTL,
ensuring SSLA compliance.

Remarks: (1) Methodology & Profiles: It uses systematic threat and risk analysis to construct
Trustworthiness Profiles and determine the minimum RTL. (2) Dynamic Adjustment: It dynamically
adjusts the RTL based on topology updates from the Facility Layer and post-analysis of security
incidents to detect emerging threats. (3) Role: It provides the Required Trust Level thresholds to the
TAF. The TAF identifies nodes and links where ATL exceeds RTL, and the Optimization Engine uses
these trusted elements for path selection. (4) Routing Plane Validation: The Risk Analysis within a
CASTOR-enabled domain will be validated at the routing plane.

Connected to
other

requirements

SR.4, TAF.R.1, TAF.R.2

KPIs
Description Value

KPIs
RTL Calculation Methodology
exhibits expected behaviour
degradation based on the
defined threat model

TRUE - Evaluation scenario: Initially run a baseline risk assessment
to establish a specific set of RTL values for network infrastructure.
Subsequently introduce new and more severe vulnerabilities into the
Risk Assessment Engine and verify that RTL values increase pro-
portionally to reflect the heightened risk exposure. The methodology
should demonstrate measurable RTL adjustments that correlate with
vulnerability severity and network topology impact

Time to update RTL values
upon detection of new threats

≤ 1 minutes, including the updated risk analysis, the construction and
enforcement of the Trust Policy through the CASTOR DLT.

Table 9.36: RA.R.2 Cascading Attack Detection

RA.R.2
Title Cascading Attack Detection

Actors
Involved

Risk Assessment

Type Functional Requirement

CASTOR D2.1 Public Page 210 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: In the heterogeneous Compute Continuum, attacks often cascade across multiple
components through lateral propagation between nodes or vertical escalation across software/hard-
ware layers within nodes. These cascading attacks create compound risks that exceed individual
vulnerabilities, as each compromised element enables further exploitation. Traditional risk as-
sessment approaches analyze threats in isolation, failing to capture propagation dynamics and
dependency chains. In CASTOR’s zero-trust environment, detecting and preventing cascading
attack patterns is essential for trusted path routing, as a single compromised path element could
compromise the entire end-to-end security assurance. Furthermore, cascading attack analysis
enables more accurate RTL calculations by accounting for topology-aware risks that network
placement introduces to router assets, ensuring that path profile requirements reflect the true risk
exposure of infrastructure elements within their specific network context.

Description: The Risk Assessment Engine shall identify and analyze cascading attack scenarios
by constructing dependency graphs that map both node-to-node relationships across the network
topology and cross-layer dependencies within individual infrastructure elements. The engine shall
analyze how the exploitation of vulnerabilities at one node can provide attack vectors to compromise
neighboring nodes along routing paths, as well as how vulnerabilities at one layer (e.g., device
firmware, hypervisor, network OS) can enable attacks on other layers within the same node. By
modeling these multi-dimensional propagation paths, the engine shall identify critical dependency
chains where a single point of failure can trigger widespread security degradation across the
network. Based on this analysis, the engine shall address the complex challenge of modeling
the threat likelihood of attack paths by assessing the compound risk posed by multi-stage attack
scenarios. To accomplish this, CASTOR aims to explore advanced modeling approaches such as
fault tree analysis to identify failure points and Markov chain modeling to quantify attack progression
probabilities, enabling the engine to dynamically recommend RTL adjustments that accurately
account for cascading threats in both dimensions. These recommendations shall prioritize mitigation
of critical propagation paths by increasing RTL thresholds for nodes serving as potential stepping
stones in network-wide attack chains or exhibiting cross-layer vulnerabilities that could enable
privilege escalation. The cascading attack detection mechanism shall integrate with real-time
monitoring data from TNDE to identify early indicators of multi-stage attacks in progress and trigger
immediate RTL recalibration to prevent further propagation.

Remarks: (1) Multi-Dimensional Propagation: The engine analyzes cascading attacks in both
network topology (lateral node-to-node) and infrastructure stack (vertical cross-layer) dimensions,
as well as combined attack scenarios that exploit both. (2) Dependency Chain Analysis: Risk
graphs capture how compromise of one element enables attacks on others, identifying critical
junction points where targeted RTL increases can effectively break attack propagation chains.
(3) Proactive Defense: By identifying potential cascading scenarios before exploitation occurs,
the engine enables preemptive RTL adjustments that prevent attackers from using compromised
components as stepping stones toward more critical network elements. This detailed risk analysis
produces accurate RTL calculations that enable precise trust-aware path provisioning decisions.

Connected to
other

requirements

SR.4, TAF.R.2

KPIs
Description Value

KPIs
RTL calculation methodologies ≥ 2 considering (static) tree-based attack paths (capturing a binary-

based propagation model) vs. probabilistic analysis leveraging ”what-
if” scenarios (e.g., Markov-chain logic) embedding uncertainty in the
threat propagation

Maximum time to generate and
recommend RTL adjustments
after detecting cascading at-
tack patterns

≤ 2 seconds, focusing on the attack path calculation aspect.

Percentage of correctly iden-
tified critical junction points
where RTL increases can
break attack propagation
chains

≥ 90%

CASTOR D2.1 Public Page 211 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 9.37: RA.R.3 Black-box risk analysis

RA.R.3
Title Black-box risk analysis

Actors
Involved

Risk Assessment

Type Functional Requirement
Description Background: CASTOR’s trusted path routing frequently spans multiple administrative domains,

each managed by different organizations with distinct security policies, infrastructure configurations,
and trust assessment methodologies. This capability is exemplified in UC4 Scenario 2, where
CASTOR-enabled domains must incorporate risk indices from MNOs using internal risk assessment
processes agnostic to CASTOR, enabling CASTOR to influence path selection based on external
risk information while maintaining domain privacy.

In inter-domain scenarios, a domain’s Risk Assessment Engine cannot access detailed internal
information about external domains’ infrastructures due to privacy requirements, commercial con-
fidentiality, and operational security constraints. Instead, external domains provide abstract trust
summaries or risk indices, reflecting their overall security posture without revealing sensitive topology
details, specific vulnerabilities, or security controls. Nonetheless, to compute accurate RTL values
for end-to-end paths across multiple domains, the Risk Assessment Engine must still incorporate
risk information from these external domains into its assessment process. This requires processing
abstract risk representations for inter-domain path selection without compromising domain privacy.

Description: The Risk Assessment Engine shall support black-box risk analysis by processing
unverified security assertions and risk indices from external domains whose internal infrastructure
characteristics are not fully disclosed. The engine shall critically evaluate these abstracted risk
values, which can be expressed as aggregated trust scores, minimum trustworthiness thresholds,
or domain-level risk ratings, without requiring access to detailed vulnerability assessments, topology
information, or specific security control implementations of external domains.

The engine shall incorporate these external risk indices into its RTL derivation process for
inter-domain paths, while explicitly modeling the uncertainty and potential unreliability of externally-
provided information. Following zero-trust principles, the engine shall never implicitly trust external
assertions but rather treat them as additional risk factors that increase the required RTL for paths
traversing those domains. The black-box analysis capability shall protect sensitive trustworthiness
values during the risk assessment of external domains. The engine shall translate external risk
formats to CASTOR’s RTL scale and apply conservative adjustments when external information
cannot be verified, flagging cases where insufficient information prevents reliable assessment.

Remarks: (1) Privacy Preservation: The engine processes external risk indices without requiring
disclosure of sensitive internal topology, vulnerability details, or security control implementations
from external domains. (2) Modular Risk Assessment Framework: The Risk Assessment Engine
shall be modular and extendable to explore harmonization approaches in which domain operators
can follow their own risk methodologies while still derive required trust level (RTL) values compatible
with the CASTOR framework. The engine shall investigate generic methodologies for translating
diverse external risk representation formats to CASTOR’s RTL scale, enabling interoperability
without requiring domains to adopt CASTOR-specific trust assessment approaches. (3) Zero-Trust
Uncertainty Handling: RTL derivation for inter-domain paths applies conservative trust requirements
for all external domain segments, with additional penalties when operating with limited visibility or
unverifiable information.

Connected to
other

requirements

SR.16, RA.R.2, TAF.R.2, INTER-DOM.2

KPIs
Description Value

KPIs
Increase the accuracy of RTL
value by incorporating external
risk indices

≥ 50% Note: Assuming the existence of a baseline set of RTL values
provided by a Security Analyst, a router vendor, or an MNO operator.

CASTOR D2.1 Public Page 212 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.2.3.4 Policy Enforcement

Table 9.38: POLICY.R.1 Intra-domain translation to SLA (SSLA) and policies

POLICY.R.1
Title Intra-domain translation to SLA (SSLA) and policies

Actors
Involved

Intent Translation & Decomposition Service

Type Functional Requirement
Description Background: In highly dynamic and heterogeneous environments, there is a growing need to

bridge the gap between what users or services want—expressed as high-level intents—and what
the infrastructure can deliver in technical, enforceable terms. Translating these intents into Service
Level Agreements (SLAs) and subsequently into domain-specific policies is crucial to ensure that
user expectations around performance, security, and trust are met in a verifiable and automated
manner. This translation mechanism enables intent-driven orchestration, where abstract objectives
(e.g., “maintain secure low-latency communication”) are decomposed into concrete, measurable
guarantees and mapped to actionable enforcement rules. Such a capability not only supports
interoperability across diverse domains but also enhances resilience, adaptability, and compliance,
allowing the network to autonomously maintain desired service levels even under changing condi-
tions or disruptions.

Description: The Orchestration layer shall be capable of translating high-level user intents into mea-
surable (Secure) Service Level Agreements ((S)SLAs) and subsequently into technical, enforceable
policies within each administrative domain through the Service Intent Translation & Decomposition
Service (SITDS). SITDS interprets abstract objectives (e.g., performance, security, and trust targets),
decomposes them into (S)SLA terms and metrics, and then derives domain-specific enforcement
rules by matching requirements to predefined path profiles in a path profile catalogue. By doing so,
SITDS defines how (S)SLA trust requirements are translated to actionable domain-specific intents
through the path profile catalogue (e.g., selecting isolation, crypto, telemetry, and remediation behav-
iors aligned with the chosen profile). The service produces policies consumable by policy engines
and controllers in the domain, supports intradomain translation for heterogeneous capabilities, and
maintains traceability from intent to (S)SLA. Out of scope are commercial or contractual negotiations
of intents with service providers, brokering or arbitrating user objectives, and any pre-(S)SLA
activities required to refine or reconcile intents until they can be formally expressed as (S)SLAs.

Remarks: In order to perform the translation, the following information is required: the status of the
network topology thanks to the Topology Graph and the complete catalog of path profiles.

Connected to
other

requirements

OSS.R.2

KPIs
Description Value

KPIs
SSLA encoding interoperability. Encoding SSLA clauses to be represented in a machine-readable for-

mat by extending well-adopted SLA schemas, to incorporate trust-
related objectives.

Table 9.39: POLICY.R.2 Cross-domain translation to SLA (SSLA) and policies

POLICY.R.2
Title Cross-domain translation to SLA (SSLA) and policies

Actors
Involved

Intent Translation & Decomposition Service

Type Functional Requirement

CASTOR D2.1 Public Page 213 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: In the context of the Compute Continuum, where services span from cloud to edge
and across multiple administrative domains, the ability to enable trust-aware end-to-end (E2E)
service provisioning is essential to ensure reliability, security, and accountability across heteroge-
neous infrastructures. This requirement becomes particularly important in CASTOR’s use case
scenarios, such as UAV inspection missions or V2X communications, where real-time decisions rely
on dynamically composed network paths that must guarantee trusted behaviour under strict latency
and security constraints. Without trust-aware coordination between domains, a single untrusted
or misconfigured segment could compromise the integrity of the entire service chain, leading to
operational risks or mission failure. Therefore, establishing a mechanism to maintain E2E trust and
verifiable assurance across domains is fundamental to delivering resilient, predictable, and safe
service performance in these mission-critical environments.

Description: To extend cross-domain protocols to include trust-related information for cross-domain
path establishment, CASTOR must address two distinct scenarios for parameter mapping between
domains. In the first scenario, an SLA already exists between two domains, meaning that the
mapping of attributes corresponding to each domain has been predefined as part of the bilateral
agreement. This pre-established mapping enables direct definition of the End-to-End (E2E) trust
requirements by leveraging the existing attribute correlations. In the second scenario, no predefined
agreements or mappings exist between domains. In this case, CASTOR must dynamically create
the parameter mapping by utilizing information that, for example, BGP-LS (Border Gateway Protocol
- Link State) or other protocol extensions can provide regarding how trust is being measured and
represented in each domain. This enables CASTOR to perform the necessary mapping between
SLAs by understanding the trust measurement semantics and capabilities of each participating
domain.

Connected to
other

requirements

OSS.R.2, INTER-DOM.TE.R.1

KPIs
Description Value

KPIs
Enforcement of traffic engineer-
ing policies across multiple ad-
ministrative domains; satisfying
the established SSLA

Cross-domain TE policy enforcement across a minimum of (3) distinct
administrative domains adhering to diverse trust models and seman-
tics; i.e., different scalar measures of what a trustworthiness value
represents.

9.2.3.5 Distributed Ledger Technologies

Table 9.40: DLT.R.1 Secure Storage of Security Claims

DLT.R.1
Title Secure Storage of Security Claims

Actors
Involved

CASTOR DLT

Type Functional Requirement
Description Background: The foundational goal of the CASTOR system is to ensure secure path routing by

continuously monitoring and establishing the trustworthiness of all nodes and links of a network.
To achieve this, the system relies on collecting various types of security claims, such as attestation
evidence (e.g., raw network traces) and trust reports from the Global TAF and the Local TAF agents.
The introduction of Distributed Ledger Technologies (DLT) in CASTOR is a strategic decision to
ensure the immutability and auditability of this sensitive security data. Therefore, a primary need is
a mechanism that not only stores these claims but does so in a way that is verifiable, tamper-proof,
and accessible only to authorized entities, thus creating a reliable historical trust record for the entire
network’s operation. This storage is crucial for post-mortem analysis (router vendors pinpointing
issues) and continuous compliance monitoring (checking against trustworthiness thresholds defined
in SLAs/SSLAs).

CASTOR D2.1 Public Page 214 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Description: The CASTOR Blockchain shall enable the storage of security claims for secure path
routing in a safe manner. These claims primarily include: (a) Attestation Evidence: Raw traces
and claims detected by the CASTOR Trust Network Device Extension (TNDE), which indicate a
failed runtime attestation task for a node or link. This data is recorded through dedicated TNDI-SP
channels and is verified by the Secure Oracle before being stored, (b) Trust Reports: Periodic or
event-driven reports generated by the Global TAF and Local TAF agents, which characterize the
security posture of the infrastructure layer based on assessed trust propositions, and (c) (S)SLAs:
These comprise the trustworthiness threshold where the network nodes and links should adhere to
continuously, and the overarching trust framework should adapt to, based on the latest changes in
the compute continuum network by enforcing new policies, if such threshold is not achieved.

By leveraging the multi-layer access control framework presented in Section 6.2.3.1, CASTOR
Secure Oracle shall enforce strict authorization checks before any security claim undergoes the final
veracity check. Only upon successful verification by the Secure Oracle will the claims be recorded
in the Private Ledger of the CASTOR DLT, ensuring their immutability and providing a reliable data
source for auditable trustworthiness assessments.

Remarks: (1) The Secure Oracle should leverage ABAC capabilities for enabling secure authoriza-
tion of entities, complementarily to the verification of incoming data.

Connected to
other

requirements

SR.9, SR.16

KPIs
Description Value

KPIs
Storage operation time < 2 sec (regarding end-to-end measurement of sending/storage be-

tween the providing entity and the on-chain/off-chain storage facility)

Table 9.41: DLT.R.2 Authentication & Authorization in CASTOR Blockchain

DLT.R.2
Title Authentication & Authorization in CASTOR Blockchain

Actors
Involved

CASTOR DLT

Type Functional Requirement
Description Background: The CASTOR Blockchain Infrastructure stores highly sensitive security and policy

data, including attestation evidence, trust policies, and contractual obligations (SLA/SSLAs). To
maintain the security, integrity, and privacy of the network operation, it is essential that only authen-
ticated and authorized entities can interact with the DLT, whether for storing new data (e.g., trust
policies, evidence) or retrieving existing data (e.g., diagnostic data, abstracted trust capabilities). In
this sense, the use of Verifiable Credentials (VCs) and Verifiable Presentations (VPs), which contain
attributes defining the entity’s role and permissions, is crucial. Therefore, a robust mechanism
for Attribute-Based Access Control (ABAC) is necessary to check these attributes against defined
security policies, ensuring the principle of least privilege and maintaining the trustworthiness of the
DLT as the central source of trust information.

Description: The CASTOR Blockchain shall leverage the necessary ABAC mechanisms for granting
access only to entities acquiring the appropriate attributes as part of their Verifiable Credentials. The
CASTOR Blockchain Infrastructure shall implement strict authentication and authorization controls
for all entities attempting to interact with the DLT functionalities (storage, retrieval, notification). The
Security Context Broker (SCB) shall serve as an important trusted intermediary, responsible for vet-
ting a critical part of incoming requests that are not received directly by the Secure Oracle. Every
external CASTOR entity (such as local TAF agents, or router vendors) must present its Verifiable
Presentations (VPs), which are derived from its Verifiable Credentials (VCs) issued by the CASTOR
Trusted Computing Base.

CASTOR D2.1 Public Page 215 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

The ABAC service, integrated within the SCB workflow, shall process these VPs to perform a
mandatory authorization check. This check involves verifying that the attributes contained in the
VPs are correct and align with the necessary access rights for the requested action. For example,
only authenticated router vendors, possessing the necessary access control attributes, can retrieve
diagnostic data (e.g., failed attestation evidence) from the DLT for vulnerability discovery and audit-
ing. This process ensures that access is granted exclusively to entities acquiring the appropriate
attributes, thus securing the DLT’s indispensable role in the CASTOR system.

Description Remarks: The CASTOR Blockchain will introduce specifically three different levels of authorization-
validation as elaborated in Section 6.2.3.1.

Connected to
other

requirements

SR.9, SR.16

KPIs
Description Value

KPIs
Authorization time <15 ms for ABAC operation

This time duration focuses on the enforcement of the attribute-based
access control policy and the validation result - i.e., whether the
sender of a request is authorized or not. It does not include any VC-
related processing or validation.

Table 9.42: DLT.R.3 Secure Oracle

DLT.R.3
Title Secure Oracle

Actors
Involved

CASTOR DLT

Type Functional Requirement
Description Background: While the DLT ensures the immutability of stored data and ABAC ensures authoriza-

tion, there is a critical need to guarantee the veracity and integrity of data before it is committed to
the blockchain. Simply storing data from an authorized source is not sufficient; the data itself must be
verified as authentic and correct, especially since the entire system’s decision-making (e.g., Global
TAF’s trust calculations) hinges on this information. A Secure Oracle comprises a ”fundamental
innovation” specifically implemented to check the veracity of incoming data (like SLAs, SSLAs, and
Trust Policies). This component is necessary to ensure the DLT is populated only with trustworthy
information, thereby securing the foundation upon which the secure path routing decisions are made.

Description: The CASTOR Blockchain shall leverage secure oracles capabilities towards ensuring
data privacy protection, secure execution guarantees, and computational verifiability. In this sense,
the CASTOR Blockchain Infrastructure shall incorporate the Secure Oracle component responsible
for performing mandatory veracity checks on critical data before its final storage in the DLT’s Private
Ledger. This function is performed immediately after the Security Context Broker (SCB) has suc-
cessfully processed the requesting entity, when necessary. The Secure Oracle shall specifically: (a)
Verify Data Authenticity and Correctness: It must check the veracity of SLAs and SSLAs coming from
the Facility Layer during the preparedness phase, and the authenticity of Trust Policies defined at the
network enrolment stage. This ensures that the foundational security thresholds and rules stored on
the DLT are accurate, (b) Enforce Secure Channel Integrity: For trust reports and trustworthiness
evidence pushed from the Local TAF/TNDE, the Secure Oracle shall ensure that the recording of this
information is strictly performed only through the provisioned, secure Trust Network Device Interface
- Security Protocol (TNDI-SP) channels, maintaining data integrity from the network edge. By acting
as a gatekeeper that performs crucial checks on data integrity and secure source channelling, the
Secure Oracle provides computational verifiability and protection against the recording of malicious
or erroneous data, thereby upholding the DLT’s role as a trusted source for the CASTOR system.

Connected to
other

requirements

SR.9, SR.16

KPIs
Description Value

KPIs
Veracity of incoming data 100%

CASTOR D2.1 Public Page 216 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Table 9.43: DLT.R.4 Network Trust Exposure Capability

DLT.R.4
Title Network Trust Exposure Capability

Actors
Involved

CASTOR DLT

Type Functional Requirement
Description Background: While the core DLT functionality focuses on internal security and auditability, the

overall CASTOR project must provide value to its external stakeholders, such as potential Service
Providers, and Federated Orchestration Services from other domains. These external entities
need to assess the trustworthiness of the CASTOR network paths before or during the deployment
of their services. Simply storing the trust data internally is not enough; the information must be
made available in a controlled and secure manner. However, providing raw network details would
compromise sensitive operational security. Therefore, there is a clear need for a dedicated function,
the Trust Exposure Layer, that can securely and selectively provide trust capabilities to external
stakeholders while simultaneously abstracting the data to prevent the revelation of any sensitive
network details.

Description: The CASTOR Blockchain shall expose the necessary interfaces for service providers
to get access to the status of (S)SLA compliance with respect to their deployed services. In addition,
based on the rich trust-related telemetry that is collected throughout the operational lifecycle of a
domain, there is also the need to provide information about the trust capabilities of a domain without
disclosing any privacy-sensitive (e.g., topology) information. In this sense, the Trust Exposure Layer
shall expose the necessary abstraction functions to securely provision abstracted trust capabilities to
authorized external stakeholders. In brief, The Trust Exposure Layer shall expose query capabilities
which are able to securely process and return trust-related data (e.g., trust summaries of a domain
or SSLA violation information) with the necessary level of abstraction. This ensures that the external
stakeholders receive valuable, actionable information necessary for assessing network trustwor-
thiness without revealing any sensitive, low-level network details about the compute continuum
elements. Finally, access to the Trust Exposure Layer must still be subject to the existing CASTOR
DLT authorization mechanisms, ensuring that only authorized external stakeholders can retrieve this
trust-related information.

Connected to
other

requirements

SR.9, SR.16

KPIs
Description Value

KPIs
Abstraction of topological data 100%

CASTOR D2.1 Public Page 217 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

9.2.4 Traffic Engineering Requirements

Table 9.44: TE.R.1 Automated Traffic Engineering TE capabilities (to cope with network conditions dy-
namicity)

TE.R.1
Title Automated Traffic Engineering TE capabilities (to cope with network conditions dynamicity)

Actors
Involved

Traffic Engineering

Type Functional Requirement
Description Background: In the CASTOR architecture, automated TE capabilities are introduced to enable the

dynamic adaptation of traffic in view of changing network conditions. Traditional routing approaches
may be capable to identify (shortest-path) routes but lack the flexibility to establish trust-driven paths
that at the same time meet network requirements, across the (AS-level) domain. The intended
integration of trust information to TE primitives, will enable the network to automatically compute
and steer traffic along (trust- and network-optimal paths) by including or excluding specific links or
devices based on predefined constraints.

The expected steering mechanism of increased automation aims to minimize manual configuration
and operational overhead but also seeks to enable fine-grained, policy-compliant routing decisions.
By integrating trust information exchange with automated path computation, CASTOR pursue
continuous alignment between service intents, trust levels, and performance objectives across
distributed domains, enabling secure and optimized routing in heterogeneous (i.e., equipment- and
capabilities-wise) network environments.

Description: The CASTOR Service Orchestration layer shall provide the mechanisms to manage the
dynamic configuration of network elements such as routers by creating, modifying, or deleting their
settings in response to topology changes, while simultaneously handling mixed-criticality require-
ments through distinct overlay topologies. For example, a prominent solution is to encode network
and trust requirements as Flex Algo configuration, where each Flex Algo instance defines a virtual
topology containing only the nodes, links, and paths that satisfy a specific set of trust requirements
established in the SSLA. This approach enables service providers to create multiple such topologies
corresponding to different trust profiles within the service catalogue, allowing dynamic path selection
based on changing trust conditions. This solution combined with link coloring, based on trust profiles
derived by the CASTOR Trust Assessment Framework (TAF), ensuring the required automated TE
capabilities will ensure that the network remains correctly configured during unexpected changes,
establishing paths that aggregate or discriminate nodes according to specific requirements such as
latency, bandwidth, reliability, and trust levels.

Connected to
other

requirements

OSS.R.1, OSS.R.2, OSS.R.3

KPIs
Description Value

KPIs
Time to adapt to trust and topol-
ogy changes

≤ 5 sec, Time to identify and utilise an alternative path.
NOTE: The time that elapses between the PCE obtaining the new
policies and the data flow being modified.

Table 9.45: TE.R.2 Constraint-based path computation capabilities (for domain-wide traffic)

TE.R.2
Title Constraint-based path computation capabilities (for domain-wide traffic)

Actors
Involved

Traffic Engineering and Path Computation Element

Type Functional Requirement

CASTOR D2.1 Public Page 218 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Background: Network topologies undergo constant changes in performance based on the irregular
and unpredictable needs of users and services. Furthermore, in the CASTOR context, trust
values of the underlying network elements may attain time-varying values. Addressing such kind
of dynamicity beyond manual (re)configuration, CASTOR leverages centralised TE intelligence
for efficient network configuration and global (i.e., domain-wide) optimization. The PCE (Path
Computation Element) functionalities enables dynamic, trust-aware traffic engineering within the
domain scope, focusing specifically on minimizing the configuration footprint at the data and
forwarding plane. Traditional routing and policy enforcement systems require extensive configura-
tions at multiple network points, leading to redundancy, inconsistent updates, and operational fragility.

Description: To significantly reduce the actions required by the network operator and streamline
deployment at the infrastructure layer, we adopt the Path Computation Element (PCE) solution—a
centralized intelligence responsible for computing optimal, policy-compliant paths based on network
state, intent requirements, and trust constraints. By delegating path computation to a PCE, each do-
main node can operate with a minimal configuration footprint, reducing management overhead while
ensuring that routes adapt automatically to performance variations or trust degradations in CASTOR.
This engineering choice streamlines control, offers increased optimization capabilities by centrally
gathering the required inputs and overall establishes a foundation for resilient, low-maintenance TE
engineering (facilitated by the CASTOR orchestration) across the (AS) domain.

Connected to
other

requirements

OSS.R.2

KPIs
Description Value

KPIs
PCE computation latency over-
head

≤ 25% overhead imposed by CASTOR framework to the PCE com-
putation latency. This overhead includes the time for the PCE to re-
turn a computed path (including any optimization computations), pro-
portional to the time required for the SSLA function that is related to
it.
NOTE: The absolute latency of the PCE functionality is heavily de-
pendent on the software and hardware capabilities on top of which
the PCE logic is running.

Table 9.46: INTER-DOM.TE.R.1 Trust summary exchange

INTER-DOM.TE.R.1
Title Interdomain exchange of trust summaries

Actors
Involved

Trust Exposure Layer, Trust Assessment Framework

Type Functional Requirement
Description Background: In order for CASTOR to establish a trusted end-to-end path traversing several

domains, trust related information should be exchanged between involved domains. The already
exchanged reachability and routing information (see Chapter 3) between (two) domains should
be complemented with trust related information Therefore, in addition to the network performance
quantities (e.g. latency, throughput), the cross-domain information exchange should include trust
related assurances. In detail, the expected trust related part should prescribe the different levels of
trust supported by the domain, together with a mechanism that allows for the meaningful comparison
of the trust summaries (of different domains).

Description: Each domain exchanges trust related information through a mechanism that needs to
gather a relevant synopsis of the domain trust and make it available to the adjacent domain. The
communication of the synopsis can rely on (the extension of) well-established inter-domain protocols
or utilise direct links between the corresponding domain orchestrators.

CASTOR D2.1 Public Page 219 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Description Remarks: A Trust Summary does not contain any domain-sensitive information about the infras-
tructure, topology, or network (in)stability. The concept of a trust synopsis — expressed as abstract
trust claims — is to convey the minimal trust declarations, adequately abstracted, to enable the
establishment of trustful service unions across multiple domains. This may include, for example, the
minimum trust level exhibited by a domain-specific segment.

However, this raises a second question: to meaningfully evaluate the end-to-end common trust level,
there must be a shared scalar reference that defines what each trust value represents — for instance,
“medium integrity” should correspond to the same type of requirements across all domains. The def-
inition of this common semantics is already agreed upon at the MNO level. Through these functional
requirements, CASTOR fills the gap by extending mutual AS agreements with the appropriate encod-
ing.

Connected to
other

requirements

TAF.R.2, TE.R.1

Description Value
Trust summaries shall be in-
terpretable by neighbouring do-
mains as part of the E2E ser-
vice provisioning.

TRUE

KPIs
Establish mechanisms for ex-
change of trust summaries
across domains.

TRUE.

CASTOR D2.1 Public Page 220 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Chapter 10

Summary and Conclusions

The current deliverable deals on who to engrain trust as part of the traffic engineering process, which
is not a new concept, but now is becoming the focal point of the industry, serving as the cornerstone
for the design of the CASTOR framework. Several proposals exist, such as the SCION, with different
maturity levels. CASTOR builds on top of these works, by identifying several foundational security, trust,
operational and traffic engineering requirements and the corresponding KPIs. CASTOR KPI values are
not just target or threshold values that characterize the success and impracticality of a solution in the
Compute Continuum landscape, since there is not such a baseline. CASTOR’s strategy with the definition
of the architecture and the KPI values is to identify the operational boundaries regarding the complexity
and the minimal performance footprint (operational profiling) and not the applicability. Thus, the reasoning
behind its selection is also documented in the deliverable.

In addition to the requirements, D2.1 delivered a comprehensive view of the overall CASTOR complex
architecture, its individual in-router artifacts and their interactions. CASTOR’s conceptual architecture
aims to satisfy the requirements that have been formulated during the requirements analysis phase.
It has also defined in more detail the four use cases of the project, going down into the level of user
stories that will be used to validate the overall CASTOR framework. The deliverable also fleshes out
the questions that need to be answered as part of the technical deliverables. More details regarding the
internal functionalities, interactions and interfaces of the individual components will be analysed in the
upcoming deliverables of WP3, WP4 and WP5. Last but not least, D2.1 is the predecessor of the final
version of the deliverable (D2.2) that will consider the cross-domain end-to-end service provisioning.

CASTOR D2.1 Public Page 221 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

List of Abbreviations

Abbreviation Translation
ACC Assisted Cruise Control
AIC Attestation Integrity Verification
ZKP Zero-Knowledge Proof
5GC 5G core
ABAC Attribute-Based Access Control
ACO Ant Colony Optimization
ALTO Application-Layer Traffic Optimization
AMF Access and Mobility Management Function
AS Application Server
AS Autonomous System
ASD Aftermarket Safety Device
ATL Actual Level of Trust
AUSF Authentication Server Function
BBL Basic Block Level
BGP Border Gateway Protocol
BGP-LS Border Gateway Protocol Link-State
BLS Boneh–Lynn–Shacham
CA Certificate Authority
CAM Cooperative Awareness Message
CER Central emergency responder
CFA Control Flow Attestation
CFSM Communicating FSM
CIM Coherent Ising Machine
CN Core Network
CNI Container Network Interfaces
CRL Certificate Revocation List
CRL-CA Certificate Revocation CA
CSP Communication Service Provider
CSP Cloud Service Provider
CSC Communication Service Customer
CTI Cyber Threat Intelligence
CXP Control Exchange Points
DENM Decentralized Environmental Notification Message
DMA Direct Memory Access
DLT Distributed Ledger Technology
DoS Denial of Service
DRL Deep Reinforcement Learning
eBPF extended Berkeley Packet Filter

CASTOR D2.1 Public Page 222 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

ECA Enrolment Certification Authority
ETSI European Telecommunications Standards Institute
Flex-Algo Flexible Algorithm
FSM Finite-State Machines
E2E End-to-End
E2EE End-to-End Encrypted
GCS Ground Control Station
GSP GEO Service Provider
I-UPF Intermediate User Plane Functions
IBN Intent-Based Networking
IS-IS Intermediate System to Intermediate System
ISP Internet Service Provider
ITS Intelligent Transportation System
L1 Layer 1
LDP Label Distribution Protocol
LER Local Emergency Responder
LSA Link State Advertisements
LTS labelled Transition Systems
MANET Mobile Ad Hoc Networks
MORP Multi-Objective Routing Optimization Problem
MPLS Multi-Protocol Label Switching
MVP Minimum Viable Product
NEP Network Equipment Provider
NFV Network Functions Virtualization
NISQ Noisy Intermediate-Scale Quantum
NOP Network Operator
OBU Onboard Unit
ORE Order-Revealing Encryption
OSPF Open Shortest Path First
OTA Over-the-Air
OSS/BSS Operational Support System/Business Support System
PCA Pseudonym Certification Authority
PCC Path Computation Client
PCE Path Computation Element
PCEP Path Computation Element Communication Protocol
PKI Public Key Infrastructure
PRF Pseudo-Random Function
QA Quantum Annealing
QAOA Quantum Approximate Optimization Algorithm
QUBO Quadratic Unconstrained Binary Optimization
QoS Quality of Service
RAT Remote Attestation Procedure
RCA Root Certificate Authority
RIB Routing Information Base
RIP Routing Information Protocol
RoT Root of Trust
RSU Roadside Unit
RSVP-TE Resource Reservation Protocol for Traffic Engineering
RTL Required Trust Level

CASTOR D2.1 Public Page 223 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

SB Simulated Bifurcation
SCB Security Context Broker
SCMS Security Credential Management System
SDN Software-Defined Networking
SITDS Service Intent Translation & Decomposition Service
SLA Service Level Agreement
SMD Security Management Domain
SMF Session Management Function
SotA State-of-the-Art
SR Segment Routing
SRv6 Segment Routing over IPv6
SSI Self-Sovereign Identity
SSLA Security Service Level Agreements
SSLO Security and Service Level Objective
TAF Trust Assessment Framework
TDE Trust Decision Engine
TDI TEE Device Interface
TE Traffic Engineering
TEE Trusted Execution Environment
TLEE Trustworthiness Level Expression Engine
TMM Trust Model Manager
TN-DSM Trust Network Device Security Monitor
TNDE Trust Network Device Extension
TNDI Trust Network Device Interfaces
TNDISP TNDI security protocol
TO Traffic Operator
TSM Trust Source Manager
TPL Trust Policy Language
TPM Trusted Platform Module
TPR Trusted Path Routing
TVM Trusted Execution Environment Virtual Machine
UAV Unmanned Aerial Vehicle
UE User Equipment
UPF User Plane Function
UTM Unmanned Traffic Management
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VNF Virtual Network Function
VPN Virtual Private Network
VQE Variational Quantum Eigensolver
VRU Vulnerable Road Users
ZK Zero knowledge
ZKP Zero knowledge proof
ZSM Zero-touch network and Service Management

CASTOR D2.1 Public Page 224 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

Bibliography

[1] Falco: Real-time threat detection solution for containers, hosts, Kubernetes and the cloud. https:
//github.com/falcosecurity/falco.

[2] TEE Device Interface Security Protocol (TDISP). https://pcisig.com/

tee-device-interface-security-protocol-tdisp.

[3] Tetragon: eBPF-based Security Observability and Runtime Enforcement. https://github.com/

cilium/tetragon.

[4] Intelligent transport systems (its); vehicular communications; basic set of applications; part 3:
Specifications of decentralized environmental notification basic service. Technical Report ETSI
TS 102 637-3, European Telecommunications Standards Institute, September 2010.

[5] Intelligent transport systems (its); vehicular communications; basic set of applications; part 2:
Specification of cooperative awareness basic service. Technical Report ETSI TS 102 637-2, Euro-
pean Telecommunications Standards Institute, March 2011.

[6] Network Functions Virtualisation (NFV); Management and Orchestration. Etsi gs nfv-mano 001
v1.1.1, ETSI, Sophia Antipolis, France, 2014.

[7] Autonomics; Enablers for autonomous management. Etsi gr nfv-ifa 041 v4.1.1, ETSI, Sophia An-
tipolis, France, 2021.

[8] Intelligent transport systems (its); security; its communications security architecture and security
management;. Technical Report ETSI TS 102 940-2.1.1, European Telecommunications Standards
Institute, July 2021.

[9] 5G Automotive Association (5GAA). 5gaa white paper on c-v2x use cases. White Paper P-
1801062, Version 1.0, 5G Automotive Association, Munich, Germany, 2019.

[10] 5G Automotive Association (5GAA). Road operator use case modelling and analysis. Technical
Report Report 2, 5G Automotive Association, Munich, Germany, 2023.

[11] 5G Automotive Association (5GAA). 5gaa – connected mobility for people, vehicles, and transport
infrastructure. https://5gaa.org/, 2025. Accessed: 2025-11-21.

[12] 5G Automotive Association (5GAA). C-v2x use cases and service level requirements — volume
III. Technical Report TR, 5G Automotive Association, Munich, Germany, 2025.

[13] A. Abbas et al. Challenges and opportunities in quantum optimization. Nature Reviews Physics,
pages 1–18, 2024.

[14] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew Paverd, Ahmad-
Reza Sadeghi, and Gene Tsudik. C-FLAT: Control-Flow Attestation for Embedded Systems Soft-
ware. In ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, 2016.

CASTOR D2.1 Public Page 225 of 234

https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://pcisig.com/tee-device-interface-security-protocol-tdisp
https://pcisig.com/tee-device-interface-security-protocol-tdisp
https://github.com/cilium/tetragon
https://github.com/cilium/tetragon
https://5gaa.org/

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[15] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserving encryp-
tion for numeric data. In Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 563–574, 2004.

[16] Esteban Aguilera, Jins de Jong, Frank Phillipson, Skander Taamallah, and Mischa Vos. Multi-
objective portfolio optimization using a quantum annealer. Mathematics, 12(9):1291, 2024.

[17] H. B. Akande, O. C. Abikoye, U. A. Jauro, and S. A. Salihu. Meta-heuristic optimization algorithms
for network routing: A survey. Journal of Computer Science and Control Systems, 12(1):5–8, 2019.

[18] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[19] Mahmoud Ammar, Adam Caulfield, and Ivan De Oliveira Nunes. SoK: Integrity, Attestation, and
Auditing of Program Execution. In IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2025.

[20] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987.

[21] Daniele Enrico Asoni, Takayuki Sasaki, and Adrian Perrig. Alcatraz: Data Exfiltration-Resilient Cor-
porate Network Architecture. In IEEE 4th International Conference on Collaboration and Internet
Computing (CIC), 2018.

[22] SCION Association. SCION — scalability, control, and isolation on next-generation networks.
https://scion-architecture.net/, 2023.

[23] D. Basile, V. Goretti, C. Di Ciccio, and S. Kirrane. Enhancing blockchain-based processes with
decentralized oracles. In Business Process Management: Blockchain and Robotic Process
Automation Forum: BPM 2021 Blockchain and RPA Forum, Rome, Italy, September 6–10, 2021,
Proceedings, pages 102–118, Cham, 2021. Springer International Publishing.

[24] Carsten Baum, Bernardo David, Elena Pagnin, and Akira Takahashi. Universally composable inter-
active and ordered multi-signatures. In IACR International Conference on Public-Key Cryptography,
pages 3–31, 2025.

[25] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Marco Bernardo
and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems, volume 3185
of Lecture Notes in Computer Science, pages 200–236. Springer, 2004.

[26] H. Birkholz, T. Fossati, W. Pan, and C Bormann. Epoch Markers. https://www.ietf.org/

archive/id/draft-ietf-rats-epoch-markers-01.txt, April 2025.

[27] H. Birkholz, E. Voit, C. Liu, D. Lopez, and M. Chen. Trusted Path Routing. https://www.ietf.

org/archive/id/draft-voit-rats-trustworthy-path-routing-11.html, January 2025.

[28] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and Wei Pan. Remote ATtestation
procedureS (RATS) Architecture. RFC 9334, January 2023.

[29] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’neill. Order-preserving sym-
metric encryption. In Advances in Cryptology-EUROCRYPT 2009: 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings 28, pages 224–241. Springer, 2009.

[30] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures
and identity-based sequential aggregate signatures, with applications to secure routing. In ACM
CCS, pages 276–285, 2007.

CASTOR D2.1 Public Page 226 of 234

https://scion-architecture.net/
https://www.ietf.org/archive/id/draft-ietf-rats-epoch-markers-01.txt
https://www.ietf.org/archive/id/draft-ietf-rats-epoch-markers-01.txt
https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-11.html
https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-11.html

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[31] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman. Se-
mantically secure order-revealing encryption: Multi-input functional encryption without obfuscation.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 563–594. Springer, 2015.

[32] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International
conference on the theory and application of cryptology and information security, pages 514–532.
Springer, 2001.

[33] Maria C Borges, Joshua Bauer, and Sebastian Werner. Oxn-automated observability assessments
for cloud-native applications. In 2024 IEEE 21st International Conference on Software Architecture
Companion (ICSA-C), pages 167–170. IEEE, 2024.

[34] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2):323–342, April 1983.

[35] Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and Alessandro Sorniotti. Blockchain
and trusted computing: Problems, pitfalls, and a solution for hyperledger fabric. Technical report,
arXiv, 2018. Preprint — describes the design of Fabric Private Chaincode (FPC).

[36] A. Callison and N. Chancellor. Hybrid quantum-classical algorithms in the noisy intermediate-scale
quantum era and beyond. Physical Review A, 106:010101, 2022.

[37] Brian E. Carpenter, Bing Liu, Mohamed Boucadair, Yu Fu, and Qin Wu. Autonomic control plane.
RFC 8994, May 2021.

[38] Emiliano Casalicchio. Container Orchestration: A Survey, pages 221–235. 01 2019.

[39] Marco Casazza, Mathieu Bouet, and Stefano Secci. Availability-driven nfv orchestration. Computer
Networks, 155, 03 2019.

[40] CASTOR. Architectural specification of castor continuum-wide trust assessment framework. De-
liverable 4.1, The CASTOR Consortium, 15 2026.

[41] CASTOR. Architectural specification of dynamic enforcement of trust-/network-aware path estab-
lishments. Deliverable 5.1, The CASTOR Consortium, 15 2026.

[42] Lin Chen, Rong Yuan, and Yufei Xia. Tora: A trusted blockchain oracle based on a decentralized tee
network. In 2021 IEEE International Conference on Joint Cloud Computing (JCC), pages 28–33.
IEEE, August 2021.

[43] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. Practical order-revealing encryp-
tion with limited leakage. In Fast Software Encryption: 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers 23, pages 474–493. Springer,
2016.

[44] Mingxi Cheng, Chenzhong Yin, Junyao Zhang, Shahin Nazarian, Jyotirmoy Deshmukh, and
Paul Bogdan. A general trust framework for multi-agent systems. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, page
332–340, Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent
Systems.

[45] Laurent Chuat, Markus Legner, David Basin, David Hausheer, Samuel Hitz, Peter Müller, and
Adrian Perrig. The Complete Guide to SCION: From Design Principles to Formal Verification.
Information Security and Cryptography. Springer Cham, 1 edition, 2022.

CASTOR D2.1 Public Page 227 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[46] Cisco Systems, Inc. MPLS Quality of Service (QoS) — Cisco IOS XE Multiprotocol Label Switching
(MPLS) Configuration Guide, 2009. Accessed: 2025-11-24.

[47] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

[48] Alexander Clemm, Laurent Ciavaglia, Lisandro Z. Granville, and Jeff Tantsura. Intent-Based Net-
working - Concepts and Definitions. RFC 9315 (Informational), October 2022.

[49] Mike Cohn. User stories applied: For agile software development. Addison-Wesley Professional,
2004.

[50] E. Davies, D. Banfield, V. Cărare, B. Weaver, C. White, and N. Walker. Optical routing with binary
optimisation and quantum annealing. In 2024 International Conference on Optical Network Design
and Modeling (ONDM), pages 1–6, 2024.

[51] Corine de Kater, Nicola Rustignoli, and Samuel Hitz. SCION Control Plane. Internet-Draft
draft-dekater-scion-controlplane-12, Internet Engineering Task Force, November 2025. Work in
Progress.

[52] Corine de Kater, Nicola Rustignoli, Jean-Christophe Hugly, and Samuel Hitz. SCION Data Plane.
Internet-Draft draft-dekater-scion-dataplane-08, Internet Engineering Task Force, November 2025.
Work in Progress.

[53] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of TLS implementations. In Proceedings of the
24th USENIX Security Symposium, pages 193–206, Washington, D.C., 2015. USENIX Association.

[54] Theo Dimitrakos, Tezcan Dilshener, Alexander Kravtsov, Antonio La Marra, Fabio Martinelli,
Athanasios Rizos, Alessandro Rosetti, and Andrea Saracino. Trust aware continuous authoriza-
tion for zero trust in consumer internet of things. In 2020 IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom), pages 1801–1812,
2020.

[55] M. Doole, J. Ellerbroek, and J. Hoekstra. Drone delivery: Urban airspace traffic density estimation.
In Proceedings of the 8th SESAR Innovation Days, Salzburg, Austria, December 2018. SESAR.
3–7 December 2018.

[56] Mirna El Rajab, Li Yang, and Abdallah Shami. Zero-touch networks: Towards next-generation
network automation. Computer Networks, 243:110294, 2024.

[57] Reese Enghardt and Cyrill Krähenbühl. A Vocabulary of Path Properties. RFC 9473, September
2023.

[58] Samaneh Eskandari, Mohammad Salehi, Wen-Chen Gu, and Jeremy Clark. Sok: Oracles from the
ground truth to market manipulation. In Proceedings of the 3rd ACM Conference on Advances in
Financial Technologies, pages 127–141, September 2021.

[59] ETSI, Dec 2024.

[60] ETSI Industry Specification Group NFV-SEC. Network functions virtualisation (nfv); trust; report
on attestation technologies and practices for secure deployments. Technical Report GR NFV-SEC
007 V1.2.1, European Telecommunications Standards Institute, November 2024.

[61] EUROCONTROL and SESAR 3 Joint Undertaking (CORUS-XUAM). U-space concept of oper-
ations (conops) — fourth edition. Technical report, Publications Office of the European Union,
Luxembourg, 2023. Official publication of the CORUS-XUAM project, Deliverable D4.2, Edition
01.00.02, July 2023. Accessed November 2025.

CASTOR D2.1 Public Page 228 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[62] European Commission, DG Communications Networks Content and Technology. White paper –
how to master europe’s digital infrastructure needs? White Paper COM(2024) 81 final, European
Commission, February 2024. Accessed: 2025-11-30.

[63] European Telecommunications Standards Institute (ETSI). Etsi gs nfv-sec 003 v1.1.1 (2014-12):
Network functions virtualisation (nfv) whitepaper. Standard GS NFV-SEC 003 V1.1.1, ETSI, Sophia
Antipolis, France, 2014.

[64] C. Filsfils, K. Talaulikar, D. Voyer, A. Bogdanov, and P. Mattes. Segment routing policy architecture.
RFC 9256, July 2022. Standards Track, updates RFC 8402.

[65] Filsfils, C. and Previdi, S. and Ginsberg, L. and Decraene, B. and Litkowski, S. and Bashandy, A.
Segment routing architecture. RFC 8402, Internet Engineering Task Force (IETF), july 2018. RFC
8402.

[66] D. Gambetta and P.S.O.F.D. Gambetta. Trust: Making and Breaking Cooperative Relations. B.
Blackwell, 1988.

[67] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In Proceedings of the NDSS Symposium 2003, NDSS, 2003.

[68] Keno Garlichs, Alexander Willecke, Martin Wegner, and Lars C. Wolf. Trip: Misbehavior detection
for dynamic platoons using trust. In 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pages 455–460, 2019.

[69] Kuntal Gaur, Anshuman Kalla, Jyoti Grover, Mohammad Borhani, Andrei Gurtov, and Madhusanka
Liyanage. A survey of virtual private lan services (vpls): Past, present and future. Computer
Networks, 196:108245, 2021.

[70] Xinyang Ge, Weidong Cui, and Trent Jaeger. GRIFFIN: Guarding Control Flows Using Intel Pro-
cessor Trace. In Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’17. ACM, 2017.

[71] Nitesh Ghodichor, Dinesh Sahu, Gautam Borkar, and Ankush Sawarkar. Secure routing protocol
to mitigate attacks by using blockchain technology in manet. International journal of Computer
Networks & Communications, 15:127–146, 03 2023.

[72] Georgios Giantamidis, Stylianos Basagiannis, and Stavros Tripakis. Learning Moore machines
from input–output traces. International Journal on Software Tools for Technology Transfer (STTT),
23:85–104, 2021. First online 2019.

[73] A. Y. Hamed, M. H. Alkinani, and M. Hassan. A genetic algorithm optimization for multi-objective
multicast routing. Constraints, 6:10, 2020.

[74] P. Hauke, G. Mattiotti, and P. Faccioli. Dominant reaction pathways by quantum computing. Physical
Review Letters, 126:028104, 2021.

[75] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston, MA, 2003.

[76] Krontiris I, Giannetsos T., and Birkholz H. Extending Trusted Path Routing: Is-
sues in Runtime Trust Assessment and monitoring. https://www.ietf.org/archive/id/

draft-rats-runtime-tpr-00.html, 2025.

CASTOR D2.1 Public Page 229 of 234

https://www.ietf.org/archive/id/draft-rats-runtime-tpr-00.html
https://www.ietf.org/archive/id/draft-rats-runtime-tpr-00.html

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[77] International Civil Aviation Organization (ICAO). Unmanned aircraft systems traffic man-
agement (utm) – a common framework with core principles for global harmonization, edi-
tion 4. https://www.icao.int/sites/default/files/left-menu-pdfs/UTM%20Framework%

20Edition%204.pdf, 2025. Accessed November 2025.

[78] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learnlib: A framework for
active automata learning. In Computer Aided Verification (CAV 2015), volume 9206 of Lecture
Notes in Computer Science, pages 487–495. Springer, 2015.

[79] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter, and Radu Sion. SoK: Introspec-
tions on Trust and the Semantic Gap. In IEEE Symposium on Security and Privacy, 2014.

[80] A. T. Jawad, R. Maaloul, and L. Chaari. A comprehensive survey on 6g and beyond: Enabling
technologies, opportunities of machine learning and challenges. Computer Networks, 237:110085,
2023.

[81] Hanwei Jia, Fengjun Zhao, Zhong Li, Yuhao Liu, Fangsen Liu, Kang Wang, and Pei Zhang. MEC
Data Offloading Strategy for UPF Sinking in 5G Core Network, page 63–71. Springer Nature
Singapore, 2024.

[82] Audun Jøsang. Subjective logic, volume 3. Springer, 2016.

[83] Audun Josang, Dongxia Wang, and Jie Zhang. Multi-source fusion in subjective logic. In 2017 20th
International Conference on Information Fusion (Fusion), pages 1–8, 2017.

[84] Hu Junping, Jin Yuhui, and Dou Liang. A time-based cluster-head selection algorithm for leach. In
2008 IEEE Symposium on Computers and Communications, pages 1172–1176, 2008.

[85] N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu. Ten challenges in advancing machine learning
technologies toward 6g. IEEE Wireless Communications, 27(3):96–103, 2020.

[86] Henna Kokkonen, Lauri Lovén, Naser Hossein Motlagh, Abhishek Kumar, Juha Partala, Tri Nguyen,
Vı́ctor Casamayor Pujol, Panos Kostakos, Teemu Leppänen, Alfonso González-Gil, et al. Auton-
omy and intelligence in the computing continuum: Challenges, enablers, and future directions for
orchestration. arXiv preprint arXiv:2205.01423, 2022.

[87] Cyrill Krähenbühl, Marc Wyss, David Basin, Vincent Lenders, Adrian Perrig, and Martin Strohmeier.
Fabrid: Flexible attestation-based routing for inter-domain networks. In USENIX Security
Symposium, 2023.

[88] Heba A. Kurdi, Bushra Alshayban, Lina Altoaimy, and Shada Alsalamah. Trustyfeer: A subjective
logic trust model for smart city peer-to-peer federated clouds. Wirel. Commun. Mob. Comput.,
2018, 2018.

[89] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach (6th Edition).
Pearson, 6th edition, 2012.

[90] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu, and Engin Kirda. Ac-
cessMiner: using system-centric models for malware protection. In 17th ACM Conference on
Computer and Communications Security, CCS ’10. ACM, 2010.

[91] Dayeol Lee, Kevin Cheang, Alexander Thomas, Catherine Lu, Pranav Gaddamadugu, Anjo
Vahldiek-Oberwagner, Mona Vij, Dawn Song, Sanjit A Seshia, and Krste Asanovic. Cerberus:
A formal approach to secure and efficient enclave memory sharing. In ACM SIGSAC Conference
on Computer and Communications Security, pages 1871–1885, 2022.

CASTOR D2.1 Public Page 230 of 234

https://www.icao.int/sites/default/files/left-menu-pdfs/UTM%20Framework%20Edition%204.pdf
https://www.icao.int/sites/default/files/left-menu-pdfs/UTM%20Framework%20Edition%204.pdf

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[92] Young Lee, Dhruv Dhody, Giuseppe Fioccola, Qin Wu, Daniele Ceccarelli, and Jeff Tantsura. Traffic
engineering (te) and service mapping yang data model. Internet-Draft, IETF, October 2025. Expires
April 15, 2026.

[93] Kevin Lewi and David J Wu. Order-revealing encryption: New constructions, applications, and lower
bounds. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1167–1178, 2016.

[94] Irian Leyva-Pupo, Cristina Cervelló-Pastor, Christos Anagnostopoulos, and Dimitrios P. Pezaros.
Dynamic upf placement and chaining reconfiguration in 5g networks. Computer Networks,
215:109200, October 2022.

[95] Yuan Li, Hongbing Wang, and Yunlei Zhao. Delegatable order-revealing encryption. In Proceedings
of the 2019 ACM Asia Conference on Computer and Communications Security, pages 134–147,
2019.

[96] Michael Hale Ligh, Andrew Case, Jamie Levy, and Aaron Walters.
The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac Memory.
Wiley Publishing, 1st edition, 2014.

[97] C. Liu, L. Iannone, D. Lopez, A. Pastor, M. Chen, and L. Su. Nasr use case and requirements.
Technical Report draft-liu-nasr-requirements-03, Internet Engineering Task Force (IETF), October
2024. Internet-Draft, intended status Informational, expires 24 April 2025.

[98] Francesco Lombardo, Stefano Salsano, Ahmed Abdelsalam, Daniel Bernier, and Clarence Filsfils.
Extending kubernetes networking to make use of segment routing over ipv6 (srv6). arXiv preprint
arXiv:2301.01178, 2023.

[99] Dominik Lorych and Lukas Jäger. Design space exploration of dice. In Proceedings of the 17th
International Conference on Availability, Reliability and Security, pages 1–10, 2022.

[100] Andrew Lucas. Ising formulations of many np problems. Frontiers in physics, 2:5, 2014.

[101] Chunyang Lv, Jianfeng Wang, Shi-Feng Sun, Yunling Wang, Saiyu Qi, and Xiaofeng Chen. Efficient
multi-client order-revealing encryption and its applications. In European Symposium on Research
in Computer Security, pages 44–63. Springer, 2021.

[102] Bruno Martini, Daniele Borsatti, Julio Garcı́a Sáez, and Salvatore Privitera. Intent-based network
slicing for sdn vertical services with assurance: Context, design and preliminary experiments.
Future Generation Computer Systems, 142:101–116, 2023.

[103] A. Maskooki, K. Deb, and M. Kallio. A customized genetic algorithm for biobjective routing in a
dynamic network. European Journal of Operational Research, 297(2):615–629, 2022.

[104] Barry M McCoy and Tai Tsun Wu. The two-dimensional Ising model. Harvard University Press,
1973.

[105] Rob McManus, Mark Longwell, Hanen Garcia, Charlie Ashton, and O’Toole Rory. Unlocking the
potential of 5g at the edge, Red Hat, Inc., 2025. [Online] Available: https://www.redhat.com/

en/blog/unlocking-potential-5g-edge. Accessed: 2025-10-16.

[106] Ralph C Merkle. A certified digital signature. In Conference on the Theory and Application of
Cryptology, pages 218–238. Springer, 1989.

[107] Jesper Møller and Brian Carpenter. Autonomic networking: Definitions and design goals. RFC
7575, June 2015.

CASTOR D2.1 Public Page 231 of 234

https://www.redhat.com/en/blog/unlocking-potential-5g-edge
https://www.redhat.com/en/blog/unlocking-potential-5g-edge

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[108] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazières, Michael Miller, and Arun Seehra.
Verifying and enforcing network paths with icing. In Proceedings of the 7th ACM International
Conference on Emerging Networking Experiments and Technologies (CoNEXT 2011). ACM, 2011.

[109] S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman. Quantum machine
learning for 6g communication networks: State-of-the-art and vision for the future. IEEE Access,
7:46317–46350, 2019.

[110] Phala Network. Phala network introduces phat contract into saas3 to build a highly scalable oracle.
Medium, January 2023.

[111] Thanh Nguyen, Meni Orenbach, and Ahmad Atamli. Live system call trace reconstruction on Linux.
Forensic Science International: Digital Investigation, 2022. Proceedings of the Twenty-Second
Annual DFRWS USA.

[112] Jose Oncina and Pedro Garcı́a. Inferring regular languages in polynomial update time. Pattern
Recognition and Image Analysis, 1:49–61, 1992.

[113] Meni Orenbach, Rami Ailabouni, Nael Masalha, Thanh Nguyen, Amhad Saleh, Frank Block, Fritz
Alder, Ofir Arkin, and Ahmad Atamli. BlueGuard: Accelerated Host and Guest Introspection Using
DPUs. In USENIX Security Symposium (USENIX Security 25). USENIX Association, 2025.

[114] Koffi Ismael Ouattara, Ana Petrovska, Artur Hermann, Nataša Trkulja, Theo Dimitrakos, and Frank
Kargl. On subjective logic trust discount for referral paths. In 2024 27th International Conference
on Information Fusion (FUSION), pages 1–8, 2024.

[115] Amir Pasdar, Y. C. Lee, and Zhe Dong. Connect api with blockchain: A survey on blockchain oracle
implementation. ACM Computing Surveys, 55(10):1–39, 2023.

[116] E. Pelofske, A. Bärtschi, and S. Eidenbenz. Quantum annealing vs. qaoa: 127 qubit higher-order
ising problems on nisq computers. In High Performance Computing, pages 240–258. Springer
Nature Switzerland, 2023.

[117] Cong Peng, Rongmao Chen, Yi Wang, Debiao He, and Xinyi Huang. Parameter-hiding
order-revealing encryption without pairings. In IACR International Conference on Public-Key
Cryptography, pages 227–256, 2024.

[118] D. J. Persis and T. P. Robert. Ant based multi-objective routing optimization in mobile ad-hoc
network. Indian Journal of Science and Technology, 8(9):875, 2015.

[119] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE, 1977.

[120] Precedence Research. Unmanned aerial vehicle market size, share, and trends 2025 to 2034.
https://www.precedenceresearch.com/unmanned-aerial-vehicle-market, 2025. Accessed
June 2025.

[121] Ivan Puddu, Moritz Schneider, Daniele Lain, Stefano Boschetto, and Srdjan Čapkun. On (the lack
of) code confidentiality in trusted execution environments. In IEEE Symposium on Security and
Privacy (SP), pages 4125–4142, 2024.

[122] S. Randriamasy, Y. Lee, J. Seedorf, and R. Yang. ALTO Performance Cost Metrics. RFC 8896,
November 2020.

[123] Yakov Rekhter, Tony Li, and Susan Hares. A border gateway protocol 4 (bgp-4). RFC 4271, January
2006. Standards Track.

CASTOR D2.1 Public Page 232 of 234

https://www.precedenceresearch.com/unmanned-aerial-vehicle-market

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[124] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture. RFC 3031,
January 2001. Standards Track.

[125] Paul D Rowe. Principles of layered attestation. arXiv preprint arXiv:1603.01244, 2016.

[126] K. Ryu and W. Kim. Multi-objective optimization of energy saving and throughput in heterogeneous
networks using deep reinforcement learning. Sensors, 21(23), 2021.

[127] Nazih Salhab, Rana Rahim-Amoud, and Rami Langar. Nfv orchestration platform for 5g over on-
the-fly provisioned infrastructure. 04 2019.

[128] V. Sastry, T. Janakiraman, and S. I. Mohideen. New algorithms for multi objective shortest path
problem. Opsearch, 40:278–298, 2003.

[129] Fabian Schwarz. TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM
TrustZone. In 25th International Symposium on Research in Attacks, Intrusions and Defenses,
RAID ’22. ACM, 2022.

[130] Fabian Schwarz and Christian Rossow. 00SEVen – re-enabling virtual machine forensics: Intro-
specting confidential VMs using privileged in-VM agents. In USENIX Security Symposium (USENIX
Security 24). USENIX Association, August 2024.

[131] ChangXiang Shen, HuanGuo Zhang, HuaiMin Wang, Ji Wang, Bo Zhao, Fei Yan, FaJiang Yu,
LiQiang Zhang, and MingDi Xu. Research on trusted computing and its development. Science
China Information Sciences, 53(3):405–433, 2010.

[132] Kiran K. Somasundaram and John S. Baras. Path optimization and trusted routing in manet: An
interplay between ordered semirings. In Natarajan Meghanathan, Brajesh Kumar Kaushik, and
Dhinaharan Nagamalai, editors, Advances in Networks and Communications, pages 88–98, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[133] J. Song, Y. Lee, A. G. D. Raymond, and J. Seedorf. Application-Layer Traffic Optimization (ALTO)
Protocol. RFC 7285, September 2013.

[134] Syh-Yuan Tan, Tiong-Sik Ng, and Swee-Huay Heng. Efficient fork-free bls multi-signature scheme
with incremental signing. In International Conference on Provable Security, pages 250–268, 2024.

[135] The CONNECT Consortium. CONNECT Trust & Risk Assessment and CAD Twinning Framework
(InitialVersion) , 2024. Accessed: 2025-11-16.

[136] Jan Tretmans. Test generation with inputs, outputs and quiescence. Software—Concepts and
Tools, 17(3):103–120, 1996.

[137] Muhammad Usman, Simone Ferlin, Anna Brunstrom, and Javid Taheri. A survey on observability
of distributed edge & container-based microservices. IEEE Access, 10:86904–86919, 2022.

[138] JP Vasseur, Adrian Farrel, and Gerald Ash. A Path Computation Element (PCE)-Based Architec-
ture. RFC 4655, August 2006.

[139] Eric Voit, Henk Birkholz, Thomas Hardjono, Thomas Fossati, and Vincent Scarlata. Attestation
Results for Secure Interactions. Internet-Draft draft-ietf-rats-ar4si-09, Internet Engineering Task
Force, August 2025. Work in Progress.

[140] C.-X. Wang and et al. On the road to 6g: Visions, requirements, key technologies, and testbeds.
IEEE Communications Surveys & Tutorials, 25(2):905–974, 2023.

CASTOR D2.1 Public Page 233 of 234

D2.1 - Operational Landscape,
Requirements and Reference Architecture - Initial version

[141] Lisa Wernet, Sebastian Rust, Silas Gerock, Tobias Meuser, and Björn Scheuermann. Quicup: Se-
cure user plane tunneling for cellular networks. In 2025 IEEE 50th Conference on Local Computer
Networks (LCN), page 1–9. IEEE, October 2025.

[142] Qin Wu, Will Liu, and Adrian Farrel. Service models explained. RFC 8309, January 2018.

[143] Kai Xiong, Tao Chen, Zheng Yang, Weizhi Wang, and Ke Li. Intent-driven nfv service orchestration
for edge computing. IEEE Transactions on Network and Service Management, 17(4):2200–2214,
2020.

[144] Haoxuan Xu, Jia Xiang, Zhen Huang, Guoxing Chen, Yan Meng, and Haojin Zhu. Latte: Layered
attestation for portable enclaved applications. In 2025 IEEE 10th European Symposium on Security
and Privacy (EuroS&P), pages 339–354, 2025.

[145] Ganxiang Yang, Chenyang Liu, Zhen Huang, Guoxing Chen, Hongfei Fu, Yuanyuan Zhang, and
Haojin Zhu. A formal approach to multi-layered privileges for enclaves. In NDSS, 2025.

[146] S. Yang, L. Zhuang, J. Zhang, J. Lan, and B. Li. A multipolicy deep reinforcement learning approach
for multiobjective joint routing and scheduling in deterministic networks. IEEE Internet of Things
Journal, 11(10):17402–17418, 2024.

[147] Siqi Zhao, Xuhua Ding, Wen Xu, and Dawu Gu. Seeing Through The Same Lens: Introspecting
Guest Address Space At Native Speed. In USENIX Security Symposium (USENIX Security 17).
USENIX Association, 2017.

[148] Lei Zhou, Xuhua Ding, and Fengwei Zhang. Smile: Secure memory introspection for live enclave.
In 2022 IEEE Symposium on Security and Privacy (SP), pages 386–401, 2022.

CASTOR D2.1 Public Page 234 of 234

	Introduction
	Towards Dynamic Trust Assessment in the Compute Continuum
	Scope and Purpose
	Relation to other WPs and Deliverables
	Deliverable Structure

	CASTOR Vision & Background in Unlocking Scalability, Control and Trustworthiness Agility in Next-Generation Networks
	Vision and Problem Statement in Converging Network Agility with Trusted Path Routing
	Research Pillars and State-of-the-Art Analysis
	Service- and Network-Aware Resource Orchestration
	Orchestration
	Routing Protocols and Source Routing in Segment Routing
	Dynamic Trust Assessment and Governance
	Risk Assessment and Required Trust Level Calculation
	Establishing Trust in Network Devices with Secure Runtime Monitoring
	Support for Global but Heterogeneous Trust
	Service Certification and Auditing through Blockchain Infrastructure
	Complex Multi-Constraint and Multi-Objective Optimization Process

	System Model and Assumptions
	Conventions and Definitions
	CASTOR as a Trusted Routing Path Extension towards Secure, Reliable Connectivity
	Threat Model

	Extending Trusted Path Routing: Manifesting Evidence-based Theory for Runtime/Explicit Trust Assessment
	Definition of Trust and Trustworthiness
	Overall Principles
	Trust Properties of Interest in CASTOR

	Elevating Trust metrics as a core enabler in Traffic Engineering Provisioning
	Current Considerations in Trusted Path Routing
	Trust objectives in Service-Level Agreements

	Subjective Logic as a Foundation for Evidence-Based Trust Assessment
	From Evidence to Opinions
	Discounting and Indirect Evidence
	Fusion of Multi-Source Evidence

	CASTOR TAF high-level description
	The Architecture of the Trust Assessment Framework (TAF)
	The Local TAF agent
	The Global TAF

	Open Questions Relating to Trust Characterisation of Routers, Links and Paths
	Information Sharing and Trust Models
	Managing Computational Dependencies and Discounting
	Modelling Uncertainty
	Challenges in the composition of trust propositions to achieve link and path-level trust
	Subjective Logic Fusion

	Multi-Path Control & Agility for Optimal {Network, Trust}-Aware E2E Path Construction
	Explicit Path Identification
	A Generic Example of Multi-Constraint Optimization Problem Definition

	Control Plane: Beaconing for Optimal Forwarding Path Identification

	CASTOR Conceptual Architecture and Functional Components
	CASTOR Conceptual Architecture
	Preparedness phase
	Service Registration phase
	Proactive phase
	Reactive phase

	CASTOR Functional Components
	SLA Translation & Decomposition
	CASTOR Orchestration
	Distributed Ledger Technologies
	CASTOR Risk Assessment Engine
	Global and Local Trust Assessment
	On-board Finite State Machine Analyser
	Optimization Engine
	Trustworthy Platform Attestation and TNDI Onboarding/Runtime
	CASTOR Tracing Capabilities
	Composite Attestation
	Crypto Structures & Building Blocks

	CASTOR Methodology
	Methodology for MVP Design
	Requirements Definition Process

	Requirements Elicitation Methodology
	Technical Requirements Specification Process
	Use Case Requirements Specification Process

	CASTOR Use Cases
	High-Level Introduction of the CASTOR Use Cases Towards Trusted Traffic Engineering process
	Highly Available & Secure Airspace Monitoring in Urban Air Mobility (UAM) Environments
	System Model, Communication Interfaces, and Protocols
	“As-is” Scenario
	Collins Use Case needs from CASTOR
	To-be Reference Scenario 1: On-Airport Trusted-Routing Loop for Real-Time Surveillance
	To-be Reference Scenario 2: Collaborative Airport Operational Control Centres for Agile Decision Making
	Reference Scenario 1 User Stories
	Reference Scenario 2 User Stories

	Trustworthy Communications of First Responder Mobile Units and the Compute Continuum
	“As-is” Scenario
	System Model and Communication
	Scenario Needs from CASTOR
	To-be Reference Scenario 1: Connectivity to V2X PKI over cross-domain path provisioning
	To-be Reference Scenario 2: OTA Updates over trustworthy paths
	Reference Scenario User Stories

	Priority-based Trusted Messaging & Scalable Performance for CCAM Applications
	“As-is” Scenario
	System Model
	Scenario Needs from CASTOR
	Improved model using CASTOR’s framework
	Reference Scenario User Stories

	Future-Proofing Next-Generation Unmanned Aerial Vehicles Communications towards Critical Infrastructure Sustainability
	System Model
	“As-is” Scenario
	Use Case needs from CASTOR
	"To be" Reference Scenario 1: CASTOR in the Data Network
	"To be" Reference Scenario 2: External Risk Indices as input to CASTOR in Data Network
	Reference Scenario User Stories for Scenarios 1 and 2: CASTOR in the Data Network and Risk-aware Path Selection
	"Nice-to-have" Scenario User Stories: CASTOR in the Shared Back-haul Infrastructure

	Trust-Aware UAV Data Delivery Across Mobile Edge Attachments

	CASTOR Framework Requirements
	Overarching Security Requirements
	Functional and Non-Functional Requirements
	Trust Assessment Requirements
	Router Operational Assurance
	Trust-aware Service Assurance
	Traffic Engineering Requirements

	Summary and Conclusions
	References

